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• Rings have a “huge” ratio of area to mass. 

• Particularly susceptible to effects of micro-meteoroid bombardment. 

• Impacts produce a large amount of particulate ejecta. 

– Vast majority ejected at v << vesc. 

– Can have enormous yields Y ~ 103 – 106  

Ballistic Transport as a Process 

• Ejecta carry away both mass and 
angular momentum. 
– Compositional Evolution 

– Structural Evolution 

• The process by which rings evolve 
subsequent to meteoroid 
bombardment is “Ballistic 
Transport” (Ip, 1983). 
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Previous Studies with Ballistic Transport 

• Structural Evolution (Durisen and colleagues,1989,1992,1996)  

 

– Found that BT could explain inner edges of A and B rings. 

– Similar ramp structures that connect to C ring and Cassini division. 

– Undulatory structure in inner B ring (and perhaps in C ring). 

 

• Compositional Evolution (Doyle et al. 1989, Cuzzi and Estrada 1998) 

 

– High albedo in A and B rings inconsistent with old rings. 

– BT can explain C/CD versus A/B ring albedo and color dichotomy and 
form/shape of radial variation across B-C transition. 

– RT models suggested intrinsic material similar to “tholins”, with the extrinsic 
bombarding material neutral/dark in color. 

Characteristics of the B-C ring boundary explained in similar time 

scale by both studies. 



The Structural and Compositional Evolution Code 

• Based on original structural code of Durisen et al. (1989), and “pollution 
transport” code of Cuzzi and Estrada (1998). 

• Treats ring as N Lagrangian ringlets or annuli whose edges move due to 
drift velocities associated with BT, and viscosity . 

• Main inputs: a  model for the viscosity n, an impact ejecta 
distribution , the absorbing (non-icy) fraction of impactor fext, and a 
retention efficiency .  

  Key quantities: micrometeoroid impact flux and ejecta yield. 

 

• Structure: Calculates the net exchange of mass and angular momentum 
(both direct and indirect) between annuli over time. 

• Composition: Calculates the changes in mass fraction of non-icy absorbing 
material due to direct and indirect (i.e. divergence) terms. 

• Parallelized in radial bins. 



Code Capabilities Moving Forward 

• Prospects for Scientific Advancement:  

• Vastly improved data coverage. 

•100’s of occultations – help to constrain , and . 

• Spectral: 8- and 15-color filter ISS, VIMS-IR, some UVIS spectral. 

• Parallelization helps to mitigate computational constraints. 

• Freedom to explore parameter space. 

• Updated viscosity models that account for the rings’ wake structure (which also 
benefits from improved ). 

• Input different ejecta distributions, and allow for radial variation. 

 

• What we hope to help explain: 

• Composition: What are the rings’ compositional constituents. 

• Mass – constrain ring surface density by matching observed brightness of 
features from a compositional standpoint. 

• Age – how long it takes to match observed features (transient and long-lived) 
compositionally and structurally. 

 

 



Still remains poorly constrained – micrometeoroid flux 

The Gross Erosion Time 

Fundamental time unit of BT is defined in terms of two key quantities: the 
impact yield Y and the impacting micrometeoroid flux  im    ∞ 
 
 

tG  =  /ej  ≈ /Yim   
 
 
tG is the time it would take for a ringlet of  to completely erode away if no 
material returned. For all of our simulations we present here: 

∞ 
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Sanity Check: Reproducing 
Results of Durisen et al. 1992 

Constant opacity model -   
 
BT sharpens and maintains inner B ring edge 



Long Term Evolution of Inner B ring Edge 

Does BT in fact maintain the inner B ring 
edge over long time scales as implied by 
Durisen et al. (1992)? 
 
• Sharpening of inner edge  

• balance between BT and viscosity. 
 
• Inner B ring undulations  

• approaching steady-state. 
 
•  Ramp formation: 

• due to advection, not viscosity.  
• Has roughly the correct slope, but 
a lot of structure. 
• “Hump” may be due to BTI* 

 
 

* Ballistic transport instability (Durisen 
1995; Latter et al., 2012; 2014a,b) 

Voyager PPS imaging  



Steepness of the Ejecta Velocity Distribution 

We have assumed the ejecta velocity 
distribution is described by a power law 
with index n = 3. 
 
• Higher n values lead to gradual “spilling 
over” of material.  

• steeper n concentrates more 
material at smallest x’s. 

 
• For higher n values, a “notch” appears. 

• Likely due to BTI. 
 
• Lower n leads to larger and better 
formed ramp. 

• More ejecta at intermediate and 
higher x’s. 
• No “hump”. 

a-Arae UVIS  

Strongly suggests the ejecta distribution is much more complex than what we model here. 



Models for Ring Opacity: Motivation 


• Cuzzi and Estrada (1998) required an opacity profile to explain the 
detailed shape of ring color profiles. 

• Utilized variance technique of Showalter and Nicholson (1990) to 
determine “largest effective particle” size. 

 

• Heuristic model opacity in which 1/ that fits the CE98 opacity 
model range.

•Allows us to associate certain  with a specific . 
• Plateaus more massive, less sensitive to effects of BT. 
 

• UVIS occultation data seems to indicate that the auto-correlation length 
in the C ring plateaus implies (Colwell et al., 2011: 2012): 

• Particles smaller in plateaus, not larger, than outside plateaus. 

• Opacity is higher, not lower there. 
 

• Direct inversion of scattered Cassini RSS signal (Marouf et al. 2012): 
• Largest particles are much larger in plateaus than outside. 
• Narrower size distribution in plateaus. 

Alternative is that viscosity is much higher in plateaus? 



Models here use different values of the 
ejecta yield Y and the magnitude of the 
kinematic nsuch that Y/fv = 105.  
 
• Bulk of optical depth may be due to 
sizes different from fiducial (fv = 1). 
 
• Accounts for size distributions may be 
broader or narrower than we assume. 
 
• A clear degree of scaling exists between 
these parameters (similar to that 
demonstrated by Durisen et al. 1992). 
 
• In fact, because time variation 
effectively depends on tG/tn, also scales 
with . 

Effect of Kinematic Viscosity in Maintaining Structure 

Dotted curve: a-Arae UVIS  

Inner edge stability requires a retrograde ejecta distribution 
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Varying the Ejecta Velocity Lower Bound xb 

Exploring the sensitivity of the structural 
and compositional evolution to choice of 
xb for n = 3.  Fiducial range is 2–100 m/s. 
 
• Structure: 

•Lowering xb has a similar 
“softening” effect as increasing n. 
• Amplitude of edge, structure in 
plateau decreases with smaller xb. 
• Slope of outer edge similar, but 
edge at different locations. 

 
• Composition: 

• Pollution transport more localized 
for smaller xb – plateaus may retain 
their compositional identity longer. 
• May be very important distinction 
for age dating young/transient 
features. 



Conclusions 

• We have confirmed that the inner B (and presumably A) ring edge, as well 
as ramp formation are due to BT. 

• By varying the steepness of the ejecta velocity distribution, we have found 
that: 

• For higher n, notches appear as well as a gradual spillover of material from 
the edge as seen in some data. 

• For lower n, the ramp is linear (as predicted by Durisen et al. 1992) and well 
formed. 

 

• We have seen structural growth that is likely due to BTI (humps and 
notches), but under very non-uniform conditions. BTI is clearly active in 
the rings in some capacity. This warrants further study. 

• C ring plateau stability requires: 

• More mass in the plateaus than is predicted by constant . 

• Higher n in the plateaus relative to outside plateaus for given . 

• Retrograde component of ejecta distribution. 



Future work 

• Challenge moving forward is to constrain the microphysics within the rings 
in order to understand how all the various effects of BT can be present at 
the same time. 

• e.g., C ring plateaus vs. ramp and inner B ring?  

 

• Preliminary calculations highlight sensitivity to particle properties. 

• e.g., particle properties different inside and outside plateaus? 

• Needed to better constrain n, Y and the ejecta distribution. 

 

• Given sensitivity to the variation of , n, Y and the form of the ejecta 
distribution, need to abandon the simplistic view that these properties are 
the same across the rings. 

• Inner B ring edge probably requires multiple ejecta distributions with 
different n-values at different ’s and x-values, and with both prograde and 
retrograde symmetries.  

• Retrograde ejecta distributions most likely play a significant role in evolving 
local ring structure. 



Summary 

• Prospects for significant advancement are good thanks to improvements 
in computational ability and new data. 

• Modeling structural and compositional changes in tandem allows us to 
help constrain a wide array of problems, e.g. 

• C ring unexplained features, its evolution and age. 

• B ring mass and ultimately ring age. 

• Fine scale structure. 

• Similarities and differences between B and A ring inner edges. 

• Evolution of the mass fractions of the various non-icy constituents can be 
used in radiative transfer models to constrain composition and its 
variation throughout the rings. 

• Will continue to benefit from improvements in our understanding of key 
physical quantities obtained from continuing Cassini data analysis. 



Plateaus with Larger Viscosity? 


