Stellar Occultation Measurements of Particles in Saturn's Rings

Rebecca Harbison & Philip Nicholson August 14, 2014

VIMS Stellar Occultation Measurements of Particles in Saturn's A Ring

Rebecca Harbison & Philip Nicholson August 14, 2014

Stellar Ring Occultations

Stellar occultation at 2.9 microns.

(VIMS covers 0.9 to 5.2 microns.)

Diffraction Effects

Diffraction Effects

Observ

VIMS pixel: 0.5 x 0.25 mrad Movement of star ~ 0.0003 mrad/point

Diffraction @ 3 microns from 10-cm ring particle: 3 µm/ 0.1 m ~ 0.03 mrad

 $\theta \sim \lambda/a$

The Model: Particle-Size Distribution

ring particle size

Log Number Density

Sample Fit: A Ring Edge

Between 6 and 10 occs return good fits (as measured by chi squared < 1.5 per DOF)

Distance from Edge

Mean Power Law Index

* This Work

Voyager Radio Occultation (Marouf et al., 1983, Zebker et al., 1985)

Earth-based Stellar (28 Sgr) Occultation (French & Nicholson, 2000) Preliminary Cassini Radio Occultation (Marouf et al., 1998)

Mean Power Law Index

Mean Minimum Particle Size

* This Work Earth-based Stellar (28 Sgr) Occultation (French & Nicholson, 2000) Preliminary Cassini Radio Occultation (Marouf et al., 1998) VIMS Solar Occultations (Harbison et al., 2013)

Mean Minimum Particle Size

Can our model still fit the data?

- Because a_{min} still effects the amount of missing light, we might still be able to measure it when it is small.
- We created simulated data using our models plus Gaussian noise and ran that though our fitting routine to check.

We can't fit independent parameters in Encke and Keeler Gaps

Red. Chi Squ.

But... We Don't Just Have VIMS

- UVIS can also see diffraction from the A Ring; it has both a larger aperture and light scatters at smaller angles.
- VIMS is more sensitive to larger particles and has better signal to noise, but misses mm-sized particles (in stellar occultations).

Conclusions

- The edge of the A Ring is unlike any other area of Saturn's rings, with power law index of $q = 3.55 \pm 0.27$ and amin of 1.9 ± 0.5 mm
- Particles in the outer A Ring are sufficiently small (less than a few mm) that they scatter outside a VIMS pixel.
- Particle size distributions often can't be defined by only one instrument.

Future Work

- Fit the gaps and ringlets in the Cassini Division and C Ring.
 - Care must be taken, as the Cassini Division has a shallow q (so a_{min} is hard to fit)
- Test an optical depth model that includes the effects of selfgravity wakes in the A Ring.
 - Preliminary results don't improve the model fits, a change in optical depth can look like missing light from a small a_{min} .
- Check parameter values in Encke and Keeler Gaps with the location of Pan and Daphnis.