Dynamics of Uranus' Dusty μ ring

H.W. Hsu, M. Horányi, S. Kempf LASP, Uni. Colorado Boulder

Special thanks to
M. Showalter \& C. Arridge

Voyager
 low phase / high phase

Voyager
 low phase / high phase
 19864_{4}^{6}

HST/ACS, August 2003

Voyager
 low phase / hich phase
 $19864^{5} 6$

V ring

G ring

E ring

Enceladus, $\sim 250 \mathrm{~km}$

Mab, ~10 km
x μ ring

V ring

Uranus vs. Saturn

| | Mass (kg) | R | Equator
 Surface \|B|
 (Gauss) | Semi-major
 axis (AU) |
| :---: | :---: | :---: | :---: | :---: |
| Saturn | 5.86510 | 60,268 | 0.2 | 9.6 |
| Uranus | 8.68110 | 25,559 | $0.3-0.5$ | 19.2 |
| ratio $(X$ | ~ 6.5 | ~ 2.4 | ~ 0.5 | 0.5 |

Force on a charged dust particle at the same R_{P}

	gravity $G M_{p}$ r^{2}	Lorentz force $m_{d}$$V \times B$	Radiation Pressure $F_{\text {rad }}$
ratio (F	1.2	4.7	4

Dynamics of Saturn's E ring particles

Horányi et al., 1992
ice grain from Enceladus
Orbit precession rate caused by planet oblateness

$$
\dot{\tilde{\omega}}_{J_{2}}=\frac{3}{2} \omega_{\mathrm{k}} J_{2}\left(\frac{R_{\mathrm{S}}}{a}\right)^{2}
$$

Lorentz force

$$
\dot{\bar{\omega}}_{\Phi}=-2 \frac{Q B_{0}}{m c}\left(\frac{R_{S}}{a}\right)^{3}
$$

for low e, low i particle orbit.

$1^{\text {st }}$ order comparison

Orbit precession rate caused by planet oblateness

$$
\dot{\bar{\omega}}_{J_{2}}=\frac{3}{2} \omega_{\mathrm{k}} J_{2}\left(\frac{R_{s}}{a}\right)^{2}
$$

Lorentz force

$$
\dot{\bar{\omega}}_{\Phi}=-2 \frac{Q B_{0}}{m c}\left(\frac{R_{\mathrm{S}}}{a}\right)^{3}
$$

for low e, low i particle orbit.

$1^{\text {st }}$ order comparison

Orbit precession rate caused by planet oblateness

$$
\dot{\bar{\omega}}_{J_{2}}=\frac{3}{2} \omega_{k} J_{2}\left(\frac{R_{s}}{a}\right)^{2}
$$

Lorentz force

$$
\dot{\bar{\omega}}_{\Phi}=-2 \frac{Q B_{0}}{m c}\left(\frac{R_{\mathrm{S}}}{a}\right)^{3}
$$

for low e, low i particle orbit.

$1^{\text {st }}$ order comparison

Orbit precession rate caused by

planet oblateness

$$
\dot{\bar{\omega}}_{J_{2}}=\frac{3}{2} \omega_{\mathrm{k}} J_{2}\left(\frac{R_{\mathrm{S}}}{a}\right)^{2}
$$

Lorentz force

$$
\dot{\bar{\omega}}_{\Phi}=-2 \frac{Q B_{0}}{m c}\left(\frac{R_{S}}{a}\right)^{3}
$$

for low e, low i particle orbit.

$1^{\text {st }}$ order comparison

Orbit precession rate caused by
planet oblateness

$$
{\dot{\bar{\omega}} J_{2}}=\frac{3}{2} \omega_{k} J_{2}\left(\frac{R_{s}}{a}\right)^{2}
$$

Lorentz force

$$
\dot{\bar{\omega}}_{\Phi}=-2 \frac{Q B_{0}}{m c}\left(\frac{R_{S}}{a}\right)^{3}
$$

for low e, low i particle orbit.

For $\dot{\tilde{\omega}}_{\phi} \approx \dot{\tilde{\omega}}_{J 2}$, a charged dust particle at 4 Rp, should have
$-0.13 \mathrm{C} / \mathrm{kg} \quad$ [Saturn]
$-0.02 \mathrm{C} / \mathrm{kg}$ [Uranus]
or
$1 \mu \mathrm{~m}$ ice grain with potential of
-5 Volt [Saturn]
-1 Volt [Uranus]

Equation of Motion

Electromagnetic Force

assuming constant dust charge
from Uranus' exosphere [Broadfoot et al., 1986]
Poynting-Robertson Drag
decrease of particle's semi-major axis
Radiation Pressure ($0.23 \mathrm{~km} / \mathrm{yr}$ for a μ ring particle
adopted $\beta=0.57$

Edge-on Profile

$1 \mu \mathrm{~m}$ ice grain [$1 \mathrm{~g} / \mathrm{cm} 3, \beta=0.57$]
Simulation Time:100 year
$\phi_{\text {dust }}=+3$ Volt (stable)

Orbital Evolution

$1 \mu \mathrm{~m}$ ice grain [$1 \mathrm{~g} / \mathrm{cm} 3, \beta=0.57$]

Lifetime < 20 year pericenter crosses
ε ring @ ~2Ru

Radial Profile

Mab as a source of the μ ring?

- Sfair and Giuliatti Winter 2012
- μ ring particle dynamics simulation, no EM force \Rightarrow long particle lifetime $\sim 10^{3}$ year
> $M_{\mu \text { ring }} \sim 6 \times 10^{6} \mathrm{~kg}$ (power-law, 1-10 $\mu \mathrm{m}$, slope of -3.5)
$\mathrm{M}^{+} \mathrm{Mab} \sim 2.7 \times 10^{-3} \mathrm{~kg} / \mathrm{s}$
$\Rightarrow \sim 80$ years to produce μ ring from Mab via impactor-ejecta process
- This work
- μ ring dust particles with a certain q / m are dynamically unstable
- Lifetime $\leqslant 20$ year
- We need:
> IDP flux measurements from New Horizon at Uranus orbit
- Dust charging condition in the μ ring region

- The four giant planets are scaled to a common radius.
- The Pluto-Charon separation is scaled to the same radius.
- Major rings are shown in grayscale.
- Moon orbits with dust rings are shown in red; otherwise yellow.
- Moon radii are are shown in proportion to log(physical radius).

