Dynamics of Uranus' Dusty µ ring

H.-W. Hsu, M. Horányi, S. Kempf LASP, Uni. Colorado Boulder

Special thanks to M. Showalter & C. Arridge

µ ring

v ring

Planetary Rings Workshop 2014/08/13-15 Boulder, CO USA

HST/ACS, August 2003

Showalter & Lissauer 2006

Uranus vs. Saturn

	Mass (kg)	R	Equator Surface B (Gauss)	Semi-major axis (AU)
Saturn	5.865 10	60,268	0.2	9.6
Uranus	8.681 10	25,559	0.3 - 0.5	19.2
ratio (X	~6.5	~2.4	~0.5	0.5

Force on a charged dust particle at the same R_P

	gravity ${GM_p\over r^2}$	Lorentz force $\frac{Q_d}{m_d} \Delta V \times B$	Radiation Pressure F_{rad}
ratio (F	1.2	4.7	4

Dynamics of Saturn's E ring particles

Horányi et al., 1992

Orbit precession rate caused by planet oblateness

$$\dot{\tilde{\omega}}_{J_2} = \frac{3}{2} \,\omega_{\rm k} \, J_2 \left(\frac{R_{\rm S}}{a}\right)^2$$

Lorentz force

$$\dot{\tilde{\omega}}_{\Phi} = -2 \frac{QB_0}{mc} \left(\frac{R_{\rm S}}{a}\right)^3$$

for low e, low i particle orbit.

ice grain from Enceladus

Orbit precession rate caused by planet oblateness

$$\dot{\tilde{\omega}}_{J_2} = \frac{3}{2} \,\omega_{\rm k} \,J_2 \left(\frac{R_{\rm S}}{a}\right)^2$$

Lorentz force

$$\dot{\tilde{\omega}}_{\Phi} = -2 \frac{QB_0}{mc} \left(\frac{R_{\rm S}}{a}\right)^3$$

for low e, low i particle orbit.

Orbit precession rate caused by planet oblateness

$$\dot{\tilde{\omega}}_{J_2} = \frac{3}{2} \,\omega_{\rm k} \,J_2 \left(\frac{R_{\rm S}}{a}\right)^2$$

Lorentz force

$$\dot{\tilde{\omega}}_{\Phi} = -2 \frac{QB_0}{mc} \left(\frac{R_{\rm S}}{a}\right)^3$$

for low e, low i particle orbit.

Orbit precession rate caused by

planet oblateness

$$\dot{\tilde{\omega}}_{J_2} = \frac{3}{2} \,\omega_k \, J_2 \left(\frac{R_S}{a}\right)^2$$

Lorentz force

$$\dot{\tilde{\omega}}_{\Phi} = -2 \frac{QB_0}{mc} \left(\frac{R_{\rm S}}{a}\right)^3$$

for low e, low i particle orbit.

Solution 50.4
$$\cdot \left(\frac{R_S}{a}\right)^{3.5}$$
 °/day
 U_{ranus} 14.7 $\cdot \left(\frac{R_U}{a}\right)^{3.5}$ °/day
Solution 198 $\cdot \frac{Q_d}{m_d} \left(\frac{R_S}{a}\right)^3$ °/day
 U_{ranus} 396 $\cdot \frac{Q_d}{m_d} \left(\frac{R_U}{a}\right)^3$ °/day

Orbit precession rate caused by

planet oblateness

$$\dot{\tilde{\omega}}_{J_2} = \frac{3}{2} \,\omega_k \, J_2 \left(\frac{R_S}{a}\right)^2$$

Lorentz force

$$\dot{\tilde{\omega}}_{\Phi} = -2 \frac{QB_0}{mc} \left(\frac{R_{\rm S}}{a}\right)^3$$

for low e, low i particle orbit.

For $\tilde{\omega}_{\phi} \approx \tilde{\omega}_{J2}$, a charged dust particle at 4 R_P, should have -0.13 C/kg [Saturn] -0.02 C/kg [Uranus] or 1 µm ice grain with potential of -5 Volt [Saturn] -1 Volt [Uranus]

Equation of Motion

Orbital Evolution

1 μm ice grain [1g/cm3, β=0.57]

Radial Profile

Mab as a source of the μ ring?

- Sfair and Giuliatti Winter 2012
 - ► µ ring particle dynamics simulation, <u>no EM force</u> ⇒ long particle lifetime ~ 10^3 year
 - M_{µ ring} ~ 6x10⁶ kg (power-law, 1-10 µm, slope of -3.5)
 M⁺_{Mab} ~ 2.7x10⁻³ kg/s
 ⇒ ~80 years to produce µ ring from Mab via impactor-ejecta process
- This work
 - µ ring dust particles with a certain q/m are dynamically unstable
 - ► Lifetime ≤ 20 year
- We need:
 - IDP flux measurements from New Horizon at Uranus orbit
 - Dust charging condition in the µ ring region

Key

- The four giant planets are scaled to a common radius.
 - The Pluto-Charon separation is scaled to the same radius.
- Major rings are shown in grayscale.
- Moon orbits with dust rings are shown in red; otherwise yellow.
- Moon radii are are shown in proportion to log(physical radius).

