PARTICLE CLUSTERING IN PERIODICALLY FORCED PLANETARY RINGS

Stuart J. Robbins¹ Glen R. Stewart¹ Larry W. Exposito¹

¹University of Colorado, Boulder

BACKGROUND AND GOAL

- Analytic models of rings predict a variety of structure, but the models are limited.
- N-body simulations have their own assumptions, but allow one to calculate many parameters and view structure that develops given those assumptions and parameters.
- Esposito et al. (2012) predicted with an analytic model that structure in the rings follows a predator-prey situation between mass aggregates and mean-square velocity.
- \sim We want to test that model with N-body simulations.

METHOD (IDEALIZED FORCING)

- REBOUND N-body code. (Rein & Liu, 2011)
- *Adjusted integrator to add forcing to a_x : += $q \cdot \sin(\delta \cdot t) \cdot \sin(2\pi x/L_x)$
 - q sets the magnitude of the forcing
 - δ sets the forcing so it is not at resonance with the orbital period
 - second sin() sets forcing at 0 at cell boundaries to simplify ghost cells
- Calculate every I/40th orbit: Viscosity, mean-squared velocity, mass aggregates.
- Esposito et al. (2012) observed predator-prey behavior after 4 forced orbits; we ran 6.

*Does **not** track azimuthal forcing. **Does** conserve angular momentum.

Parameter Space

- Location: Outer edge B ring, $a_0 = 117.56$ Mm
- $L_x = L_y = 10 \cdot \lambda_{crit}$ (cell sizes 340 1360 m)
- N = 37,000 1,169,000 (largest haven't finished yet; N = 493,00 have)
- Four simulations run for every parameter set: 192 simulations,
 ≈ 15,300 CPU hours (1.74 yrs). (Robbins et al. (2010) used 27,000 CPU hrs)

$$\begin{array}{c} \underline{T} \\ 1.0 \\ 1.5 \\ 2.0 \end{array} \begin{array}{c} \underline{\rho} \\ 0.225 \\ 0.450 \end{array} \begin{array}{c} \underline{q^*} \\ 0 \\ x \end{array} \begin{array}{c} \underline{\delta} \\ 0.7 \\ 20x \\ 50x \\ 100x \end{array} \begin{array}{c} \underline{\delta} \\ 0.7 \\ 1.3 \end{array}$$

*Multiples of the RMS particle acceleration at steady-state (orbit 6.000). q = 0 is unforced.

Mass Aggregates

- First variable is mean-square velocity.
- Second variable is mean aggregate mass (second moment of mass distribution): $\sum_{m=1}^{number of clumps} \left(\sum_{m=1}^{particles in clump} m \right)^{2}$

- But: Need a method to identify clumps.
 - needs to be a quantitative method
 - needs to be a hard cluster code (particles uniquely belong to one cluster)
 - needs to have a minimum number of adjustable parameters
 - already have a DBSCAN (Ester et al., 1996) implementation for craters (Robbins et al., 2014), adapted to use for rings particles!

Mass Aggregates: How DBSCAN Works (2 inputs)

Mass Aggregates: EXAMPLES (τ =1.0, ρ =0.45)

Mass Aggregates: EXAMPLES (τ =1.5, ρ =0.225)

Results: Parameter Space Navigation

Results: Parameter Space Navigation

Results: $\tau = 1.0, \rho = 0.45, \text{UNFORCED}$ (still see variability)

Results: $\tau = 1.0$, $\rho = 0.45$, UNFORCED (still see variability)

RESULTS: $\tau = 1.0, \rho = 0.45, \text{UNFORCED}$ (Still see Variability) Unforced

Results: NAVIGATIONAL CHART

RESULTS (similar behavior to Lewis & Stewart Enke Gap simulations): T=1.0, $\rho=0.45$, $q=100\times$, $\delta=0.7$

Results (Cluster Code "clumps" Parameters): $\tau = 1.0, \rho = 0.45, q = 100 \times, \delta = 0.7$

Results (Cluster Code "clumps" Parameters): $\tau = 1.0, \rho = 0.45, q = 100 \times, \delta = 1.3$

Results (Cluster Code "clumps" Parameters): $\tau = 1.0, \rho = 0.45, q = 100x$

Results: Navigational Chart

Results (viscous over-stability?): $\tau = 1.5, \rho = 0.225, q = 100 \times, \delta = 0.7$

Results (Cluster Code "clumps" Parameters): $\tau = 1.5$, $\rho = 0.225$, q = 100x, $\delta = 0.7$

Results (Cluster Code "clumps" Parameters): $\tau = 1.5, \rho = 0.225, q = 100 \times, \delta = 1.3$

Results (Cluster Code "clumps" Parameters): $\mathbf{T}=1.5$, $\rho=0.225$, $\mathbf{Q}=100 \times$

Summary of Progress

- N-body simulations to test predator-prey analytic model.
- Lots of simulations for large parameter space; several per parameter set.
- Several simulations do not show predator-prey characteristics (cycling in phase space and phase lags).
- But, some simulations do.

Gravity-dominated clumps give a new fixed point