For there is nothing covered, that shall not be revealed; neither hid, that shall not be known. Therefore whatsoever ye have spoken in darkness shall be heard in the light. —Luke 2:12-13

Unveiling Saturn's F ring at ring-plane crossing

Britt Scharringhausen Beloit Astronomy Research Group Planetary Rings Workshop August 15, 2014, Boulder, CO

RPX Lightcurve, Dec 1-2, 2011

RPX Lightcurve, Dec 1-2, 2011

RPX Lightcurve, Dec 1-2, 2011

F ring Back

(Blocked by main rings)

Scharringhausen (2007) Gaussian F ring: FWHM: I 3 km, T_{peak}=0.7

Scharringhausen (2007) Gaussian F ring: FWHM: I 3 km, T_{peak}=0.7

Ring model with F-ring orbit of Albers, et al. 2012

Ascending Node

Publication	Observations	Ω	Precession Rate
Bosh <i>et al.</i> , 2002	Pre-Cassini occultations	17.3±3.9°	-2.6877°/day
Albers <i>et al.</i> , 2012	UVIS occultations	15.0±1.4°	-2.68779°/day
Cooper <i>et al.</i> , 2013	ISS images	5.3 ± 0.6°	Not fit
		7 ± 2°	Not fit

0. Node=0, MJD53706.1

-100000.

-100000.

Node=0, MJD53706.0

100000.

Node=0, MJD53706.2

Node=0, MJD53706.0	Node=10, MJD53706.0	Node=20, MJD53706.0	
-100000. 0. 100000. Node=0, MJD53706.1	-199999. 0. 109999. Node=10, MJD53706.1	-1669900. 0. 1069900. Node=20, MJD53706.1	
-160090. 0. 100090. Node=0, MJD53706.1	-196060. 0. 106666. Node=10, MJD53706.1	-199990. 0. 109990. Node=20, MJD53706.1	
. 100000. 0. 100000. Node=0, MJD53706.1	-100090. 0. 100096.	-100000. 0. 100000. Node=20, MJD53706.1	
	-196090. e. 105090.		
Node=0, MJD53706.2	Node=10, MJD53706.2	Node=20, MJD53706.2	
-106660. 0. 106660.	-100000. 0. 100000.	-100000. 0. 100000.	
$(2_0=0^{\circ})$	$(2_0 = 10^{\circ})$	$(2_0 = 20^{\circ})$	

i and Ω_0 near Prometheus (Cooper et al., 2013)

Cooper et al. (2013) fit 9805 ISS STREAMER/CHANNEL images, in 10 sequences, each following a piece of the F ring *near Prometheus* for one orbit.

Images closer than θ to Prometheus excluded from fit.

Inclination and Vertical Position

Cassini/Saturn Moon Tracker Results

Ephemeris: 010 SAT357 + SAT360 + SAT363 + DE430 Prometheus lag:

Generated by the Saturn Tracker Tool, PDS Rings Node, Wed Aug 13 10:20:52 2014

Cassini/Saturn Moon Tracker Results

Ephemeris: 010 SAT357 + SAT360 + SAT363 + DE430 Prometheus lag:

Ephemeris: 010 SAT357 + SAT360 + SAT363 + DE430 Prometheus lag:

Generated by the Saturn Tracker Tool, PDS Rings Node, Wed Aug 13 10:20:52 2014

Shifting the F ring up 8 km

Optically thin ribbon F ring with a thickness of 8.5 km & a vertical displacement of +7 km

Summary

- The back of the F ring is revealed from behind the main rings at RPX, causing a ramp-up of brightness.
- The timing of the ramp up is strongly affected by the vertical position of the F ring, which is affected by:
 - The F ring's inclination and ascending node.
 - Any vertical displacement of the F ring core (or other strands or clumps present in the averaging region at RPX).
- ... which are affected *locally* by perturbations from Prometheus, so perhaps we cannot model the F ring with one single *i* and one single Ω_0 .

To Do

- Ignoring the ramp-up near RPX, fit to the linear portions of the lightcurve where the brightness is not as sensitive to the vertical position of the F ring.
- Then apply a vertical displacement to the F ring near RPX???
- Get local: Examine data profiles of VIF vs. r to determine at what radius the brightness is increasing in the ramp-up. Initial analysis seems to that the ramp-up is faster at smaller r. Compare model profiles (which are decomposed into model layers).

F-ring Ansa Lightcurves

