For there is nothing covered, that shall not be revealed; neither hid, that shall not be known.
Therefore whatsoever ye have spoken in darkness shall be heard in the light.
-Luke 2:12-13

Unveiling Saturn's F ring at ring-plane crossing

Britt Scharringhausen
Beloit Astronomy Research Group
Planetary Rings Workshop
August I5, 20I4, Boulder, CO

VIMS Observation, Dec I-2, 2005

RPX Lightcurve, Dec I-2, 20II

RPX Lightcurve, Dec I-2, 20II

RPX Lightcurve, Dec I-2, 20|I

Lightcurve with Darkside and Litside Fits

\qquad
MJD53706. 119

-100000.
100000.

MJD53706.344

100000.

- Start of ramp-up is a strong constraint on the location of the lower edge of the brightest part of the F ring.
- Unfortunately, the RPX and clumps make it harder to constrain the upper edge.

Ring Model Layers

F ring Back
(Blocked by
main rings)

Ring Model Layers

F ring Back

Main Rings

(Blocked by
main rings)

Ring Model Layers

F ring Back
Main Rings
(Blocked by
main rings)

F ring Front

Ring Model Layers

F ring Back
Main Rings
(Blocked by
main rings)

Blocking by
F ring Front

Scharringhausen (2007)

 Gaussian F ring:
FWHM: I3 km, $\tau_{\text {peak }}=0.7$

Scharringhausen (2007)

 Gaussian F ring:
FWHM: I3 km, $\tau_{\text {peak }}=0.7$

Ring model with F-ring orbit of Albers, et al. 2012

Data and Ribbon 0003, height $=0.5 \mathrm{~km}$, tau $=3.000$

Ascending Node

Publication	Observations	Ω	Precession Rate
Bosh et al., 2002	Pre-Cassini occultations	$17.3 \pm 3.9^{\circ}$	$-2.6877^{\circ} /$ day
Albers et al., 2012	UVIS occultations	$15.0 \pm 1.4^{\circ}$	$-2.68779^{\circ} /$ day
Cooper et al., 2013	ISS images	$5.3 \pm 0.6^{\circ}$	Not fit

```
C<S
\(-100000\).
Node \(=0\), MJD55700. 1
```


$\underbrace{}_{\text {-100000. }}$

$\Omega_{0}=0^{\circ}$
Node =0, MJDD53706,0

(10000.

$\Omega_{0}=0^{\circ}$

$\Omega_{0}=40^{\circ}$

-10000.	0.	100000.
Node=40, MJD53706. 1		

i and Ω_{0} near Prometheus (Cooper et al., 20I3)
Cooper et al. (2013) fit 9805 ISS STREAMER/CHANNEL images, in 10 sequences, each following a piece of the F ring near Prometheus for one orbit.

Images closer than θ to Prometheus excluded from fit.

Inclination and Vertical Position

Cassini/Saturn Moon Tracker Results

Ephemeris: 010 SAT357 + SAT360 + SAT363 + DE430
Prometheus lag:
Gencratedty te Satum Tacker Tool POO Rings Node. Wod Nog 131020.522014

Cassini/Saturn Moon Tracker Results

Ephemeris: 010 SAT357 + SAT360 + SAT363 + DE430
Prometheus lag:

Cassini/Saturn Moon Tracker Results

Ephemeris: 010 SAT357 + SAT360 + SAT363 + DE430
Prometheus lag:

Shifting the F ring up 8 km

Optically thin ribbon F ring with a thickness of 8.5 km \& a vertical displacement of +7 km

Summary

- The back of the F ring is revealed from behind the main rings at RPX, causing a ramp-up of brightness.
- The timing of the ramp up is strongly affected by the vertical position of the F ring, which is affected by:
- The F ring's inclination and ascending node.
- Any vertical displacement of the F ring core (or other strands or clumps present in the averaging region at RPX).
- ... which are affected locally by perturbations from Prometheus, so perhaps we cannot model the F ring with one single i and one single Ω.

To Do

- Ignoring the ramp-up near RPX, fit to the linear portions of the lightcurve where the brightness is not as sensitive to the vertical position of the F ring.
- Then apply a vertical displacement to the F ring near RPX???
- Get local: Examine data profiles of VIF vs. r to determine at what radius the brightness is increasing in the ramp-up. Initial analysis seems to that the ramp-up is faster at smaller r. Compare model profiles (which are decomposed into model layers).

F-ring Ansa Lightcurves

