University of Colorado at Boulder University of Colorado CU Home Search A to Z Index Map
Laboratory for Atmospheric and Space Physics

Juno 2017 GRL Special Issue

The Juno GRL Special Issue (2017) is at Wiley and is summarized below (inc. the two Science papers).

There are 52 papers. [View list in NASA ADS]

1) Adriani, A., et al. (2017), Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora, Geophysics Research Letters, 44, 4633-4640, doi:10.1002/2017GL072905.
ADS  Cites
BibTeX DOI
2) Allegrini, F., et al. (2017), Electron beams and loss cones in the auroral regions of Jupiter, Geophysics Research Letters, 44, 7131-7139, doi:10.1002/2017GL073180.
ADS  Cites
BibTeX DOI
3) Becker, H.N., et al. (2017), Observations of MeV electrons in Jupiter’s innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3, Geophysics Research Letters, 44, 4481-4488, doi:10.1002/2017GL073091.
ADS  Cites
BibTeX DOI
4) Benn, M., et al. (2017), Observations of interplanetary dust by the Juno magnetometer investigation, Geophysics Research Letters, 44, 4701-4708, doi:10.1002/2017GL073186.
ADS  Cites
BibTeX DOI
5) Bolton, S. and Levin, S. and Bagenal, F. (2017), Juno’s first glimpse of Jupiter’s complexity, Geophysics Research Letters, 44, 7663-7667, doi:10.1002/2017GL074118.
ADS  Cites
BibTeX DOI
6) Bolton, S.J., et al. (2017), Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft, Science, 356, 821-825, doi:10.1126/science.aal2108.
ADS  Cites
BibTeX DOI
7) Bonfond, B., et al. (2017), Morphology of the UV aurorae Jupiter during Juno’s first perijove observations, Geophysics Research Letters, 44, 4463-4471, doi:10.1002/2017GL073114.
ADS  Cites
BibTeX DOI
8) Clark, G., et al. (2017), Observation and interpretation of energetic ion conics in Jupiter’s polar magnetosphere, Geophysics Research Letters, 44, 4419-4425, doi:10.1002/2016GL072325.
ADS  Cites
BibTeX DOI
9) Connerney, J.E.P., et al. (2017), Jupiter`s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits, Science, 356, 826-832, doi:10.1126/science.aam5928.
ADS  Cites
BibTeX DOI
10) Cowley, S.W.H., et al. (2017), Magnetosphere-ionosphere coupling at Jupiter: Expectations for Juno Perijove 1 from a steady state axisymmetric physical model, Geophysics Research Letters, 44, 4497-4505, doi:10.1002/2017GL073129.
ADS  Cites
BibTeX DOI
11) Dinelli, B.M., et al. (2017), Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region, Geophysics Research Letters, 44, 4625-4632, doi:10.1002/2017GL072929.
ADS  Cites
BibTeX DOI
12) Ebert, R.W., et al. (2017), Accelerated flows at Jupiter’s magnetopause: Evidence for magnetic reconnection along the dawn flank, Geophysics Research Letters, 44, 4401-4409, doi:10.1002/2016GL072187.
ADS  Cites
BibTeX DOI
13) Fletcher, L.N., et al. (2017), Jupiter’s North Equatorial Belt expansion and thermal wave activity ahead of Juno’s arrival, Geophysics Research Letters, 44, 7140-7148, doi:10.1002/2017GL073383.
ADS  Cites
BibTeX DOI
14) Folkner, W.M., et al. (2017), Jupiter gravity field estimated from the first two Juno orbits, Geophysics Research Letters, 44, 4694-4700, doi:10.1002/2017GL073140.
ADS  Cites
BibTeX DOI
15) Gershman, D.J., et al. (2017), Juno observations of large-scale compressions of Jupiter’s dawnside magnetopause, Geophysics Research Letters, 44, 7559-7568, doi:10.1002/2017GL073132.
ADS  Cites
BibTeX DOI
16) Gladstone, G.R., et al. (2017), Juno-UVS approach observations of Jupiter’s auroras, Geophysics Research Letters, 44, 7668-7675, doi:10.1002/2017GL073377.
ADS  Cites
BibTeX DOI
17) Grassi, D., et al. (2017), Preliminary results on the composition of Jupiter’s troposphere in hot spot regions from the JIRAM/Juno instrument, Geophysics Research Letters, 44, 4615-4624, doi:10.1002/2017GL072841.
ADS  Cites
BibTeX DOI
18) Gruesbeck, J.R., et al. (2017), The interplanetary magnetic field observed by Juno enroute to Jupiter, Geophysics Research Letters, 44, 5936-5942, doi:10.1002/2017GL073137.
ADS  Cites
BibTeX DOI
19) Haggerty, D.K., et al. (2017), Juno/JEDI observations of 0.01 to >10 MeV energetic ions in the Jovian auroral regions: Anticipating a source for polar X-ray emission, Geophysics Research Letters, 44, 6476-6482, doi:10.1002/2017GL072866.
ADS  Cites
BibTeX DOI
20) Hospodarsky, G.B., et al. (2017), Jovian bow shock and magnetopause encounters by the Juno spacecraft, Geophysics Research Letters, 44, 4506-4512, doi:10.1002/2017GL073177.
ADS  Cites
BibTeX DOI
21) Hueso, R., et al. (2017), Jupiter cloud morphology and zonal winds from ground-based observations before and during Juno’s first perijove, Geophysics Research Letters, 44, 4669-4678, doi:10.1002/2017GL073444.
ADS  Cites
BibTeX DOI
22) Imai, M., et al. (2017), Direction-finding measurements of Jovian low-frequency radio components by Juno near Perijove 1, Geophysics Research Letters, 44, 6508-6516, doi:10.1002/2017GL072850.
ADS  Cites
BibTeX DOI
23) Imai, M., et al. (2017), Statistical study of latitudinal beaming of Jupiter’s decametric radio emissions using Juno, Geophysics Research Letters, 44, 4584-4590, doi:10.1002/2017GL073148.
ADS  Cites
BibTeX DOI
24) Imai, M., et al. (2017), Latitudinal beaming of Jovian decametric radio emissions as viewed from Juno and the Nançay Decameter Array, Geophysics Research Letters, 44, 4455-4462, doi:10.1002/2016GL072454.
ADS  Cites
BibTeX DOI
25) Ingersoll, A.P., et al. (2017), Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer, Geophysics Research Letters, 44, 7676-7685, doi:10.1002/2017GL074277.
ADS  Cites
BibTeX DOI
26) Kaspi, Y., et al. (2017), The effect of differential rotation on Jupiter’s low-degree even gravity moments, Geophysics Research Letters, 44, 5960-5968, doi:10.1002/2017GL073629.
ADS  Cites
BibTeX DOI
27) Kimura, T., et al. (2017), Transient brightening of Jupiter’s aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft, Geophysics Research Letters, 44, 4523-4531, doi:10.1002/2017GL072912.
ADS  Cites
BibTeX DOI
28) Kollmann, P., et al. (2017), A heavy ion and proton radiation belt inside of Jupiter’s rings, Geophysics Research Letters, 44, 5259-5268, doi:10.1002/2017GL073730.
ADS  Cites
BibTeX DOI
29) Kurth, W.S., et al. (2017), A new view of Jupiter’s auroral radio spectrum, Geophysics Research Letters, 44, 7114-7121, doi:10.1002/2017GL072889.
ADS  Cites
BibTeX DOI
30) Li, C., et al. (2017), The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data, Geophysics Research Letters, 44, 5317-5325, doi:10.1002/2017GL073159.
ADS  Cites
BibTeX DOI
31) Louarn, P., et al. (2017), Generation of the Jovian hectometric radiation: First lessons from Juno, Geophysics Research Letters, 44, 4439-4446, doi:10.1002/2017GL072923.
ADS  Cites
BibTeX DOI
32) Louis, C.K., et al. (2017), Io-Jupiter decametric arcs observed by Juno/Waves compared to ExPRES simulations, Geophysics Research Letters, 44, 9225-9232, doi:10.1002/2017GL073036.
ADS  Cites
BibTeX DOI
33) Mauk, B.H., et al. (2017), Juno observations of energetic charged particles over Jupiter’s polar regions: Analysis of monodirectional and bidirectional electron beams, Geophysics Research Letters, 44, 4410-4418, doi:10.1002/2016GL072286.
ADS  Cites
BibTeX DOI
34) Ma, Q., et al. (2017), Electron butterfly distributions at particular magnetic latitudes observed during Juno’s perijove pass, Geophysics Research Letters, 44, 4489-4496, doi:10.1002/2017GL072983.
ADS  Cites
BibTeX DOI
35) McComas, D.J., et al. (2017), Plasma environment at the dawn flank of Jupiter’s magnetosphere: Juno arrives at Jupiter, Geophysics Research Letters, 44, 4432-4438, doi:10.1002/2017GL072831.
ADS  Cites
BibTeX DOI
36) Moore, K.M., et al. (2017), The analysis of initial Juno magnetometer data using a sparse magnetic field representation, Geophysics Research Letters, 44, 4687-4693, doi:10.1002/2017GL073133.
ADS  Cites
BibTeX DOI
37) Moore, L., et al. (2017), Variability of Jupiter’s IR H3+ aurorae during Juno approach, Geophysics Research Letters, 44, 4513-4522, doi:10.1002/2017GL073156.
ADS  Cites
BibTeX DOI
38) Moriconi, M.L., et al. (2017), Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions, Geophysics Research Letters, 44, 4641-4648, doi:10.1002/2017GL073592.
ADS  Cites
BibTeX DOI
39) Mura, A., et al. (2017), Infrared observations of Jovian aurora from Juno’s first orbits: Main oval and satellite footprints, Geophysics Research Letters, 44, 5308-5316, doi:10.1002/2017GL072954.
ADS  Cites
BibTeX DOI
40) Nichols, J.D., et al. (2017), Response of Jupiter’s auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno, Geophysics Research Letters, 44, 7643-7652, doi:10.1002/2017GL073029.
ADS  Cites
BibTeX DOI
41) Orton, G.S., et al. (2017), The first close-up images of Jupiter’s polar regions: Results from the Juno mission JunoCam instrument, Geophysics Research Letters, 44, 4599-4606, doi:10.1002/2016GL072443.
ADS  Cites
BibTeX DOI
42) Orton, G.S., et al. (2017), Multiple-wavelength sensing of Jupiter during the Juno mission’s first perijove passage, Geophysics Research Letters, 44, 4607-4614, doi:10.1002/2017GL073019.
ADS  Cites
BibTeX DOI
43) Paranicas, C., et al. (2017), Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3, Geophysics Research Letters, 44, 4426-4431, doi:10.1002/2017GL072600.
ADS  Cites
BibTeX DOI
44) Santos-Costa, D., et al. (2017), First look at Jupiter’s synchrotron emission from Juno’s perspective, Geophysics Research Letters, 44, 8676-8684, doi:10.1002/2017GL072836.
ADS  Cites
BibTeX DOI
45) Sinclair, J.A., et al. (2017), Independent evolution of stratospheric temperatures in Jupiter’s northern and southern auroral regions from 2014 to 2016, Geophysics Research Letters, 44, 5345-5354, doi:10.1002/2017GL073529.
ADS  Cites
BibTeX DOI
46) Sindoni, G., et al. (2017), Characterization of the white ovals on Jupiter’s southern hemisphere using the first data by the Juno/JIRAM instrument, Geophysics Research Letters, 44, 4660-4668, doi:10.1002/2017GL072940.
ADS  Cites
BibTeX DOI
47) Szalay, J.R., et al. (2017), Plasma measurements in the Jovian polar region with Juno/JADE, Geophysics Research Letters, 44, 7122-7130, doi:10.1002/2017GL072837.
ADS  Cites
BibTeX DOI
48) Sánchez-Lavega, A., et al. (2017), A planetary-scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground-based observations, Geophysics Research Letters, 44, 4679-4686, doi:10.1002/2017GL073421.
ADS  Cites
BibTeX DOI
49) Tetrick, S.S., et al. (2017), Plasma waves in Jupiter’s high-latitude regions: Observations from the Juno spacecraft, Geophysics Research Letters, 44, 4447-4454, doi:10.1002/2017GL073073.
ADS  Cites
BibTeX DOI
50) Valek, P.W., et al. (2017), Hot flow anomaly observed at Jupiter’s bow shock, Geophysics Research Letters, 44, 8107-8112, doi:10.1002/2017GL073175.
ADS  Cites
BibTeX DOI
51) Wahl, S.M., et al. (2017), Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core, Geophysics Research Letters, 44, 4649-4659, doi:10.1002/2017GL073160.
ADS  Cites
BibTeX DOI
52) Zhang, X.-J., et al. (2017), Searching for low-altitude magnetic field anomalies by using observations of the energetic particle loss cone on JUNO, Geophysics Research Letters, 44, 4472-4480, doi:10.1002/2017GL072902.
ADS  Cites
BibTeX DOI
Input file:            Juno_GRL_Special_Issue1_20170930.doi    (2017-Nov-20 14:51:55)
Citations/BibTeX file: Juno_GRL_Special_Issue1_20170930.bibtex (2017-Oct-23 09:48:09)

Below is a list of DOIs of the 52 papers with DOIs, in alphabetical order:

10.1002/2016GL072187
10.1002/2016GL072286
10.1002/2016GL072325
10.1002/2016GL072443
10.1002/2016GL072454
10.1002/2017GL072600
10.1002/2017GL072831
10.1002/2017GL072836
10.1002/2017GL072837
10.1002/2017GL072841
10.1002/2017GL072850
10.1002/2017GL072866
10.1002/2017GL072889
10.1002/2017GL072902
10.1002/2017GL072905
10.1002/2017GL072912
10.1002/2017GL072923
10.1002/2017GL072929
10.1002/2017GL072940
10.1002/2017GL072954
10.1002/2017GL072983
10.1002/2017GL073019
10.1002/2017GL073029
10.1002/2017GL073036
10.1002/2017GL073073
10.1002/2017GL073091
10.1002/2017GL073114
10.1002/2017GL073129
10.1002/2017GL073132
10.1002/2017GL073133
10.1002/2017GL073137
10.1002/2017GL073140
10.1002/2017GL073148
10.1002/2017GL073156
10.1002/2017GL073159
10.1002/2017GL073160
10.1002/2017GL073175
10.1002/2017GL073177
10.1002/2017GL073180
10.1002/2017GL073186
10.1002/2017GL073377
10.1002/2017GL073383
10.1002/2017GL073421
10.1002/2017GL073444
10.1002/2017GL073529
10.1002/2017GL073592
10.1002/2017GL073629
10.1002/2017GL073730
10.1002/2017GL074118
10.1002/2017GL074277
10.1126/science.aal2108
10.1126/science.aam5928