Juno Papers (all)
Juno Journal Articles (as known by date at bottom of page).(Primary source is Steve L’s papers spreadsheet, then any Rob W randomly spots.)
These DOIs were not found in NASA ADS (yet), so are excluded from the following section:
– Hao et al. (2024), Jupiter’s Whistler‐Mode Belts and Electron Slot Region, doi: 10.1029/2024ja032850
– Joseph et al. (2024), Evidence of Magnetic Reconnection in Ganymede’s Wake Region From Juno, doi: 10.1029/2024ja033173
– Hao et al. (2024), Acceleration of Energetic Electrons in Jovian Middle Magnetosphere by Whistler‐Mode Waves, doi: 10.1029/2024ja032735
– Kotsiaros et al. (2024), Juno Observations Set New Constraints on the Electrodynamic Interaction Between Io and Jupiter, doi: 10.1029/2024ja032591
– Wang et al. (2024), Ion Parameters Dataset From Juno/JADE Observations in Jupiter’s Magnetosphere Between 10 and 50 RJ, doi: 10.1029/2024ja033454
There are 434 papers. [View list in NASA ADS] ← ADS Library Rob W keeps.
434) | Aglyamov, Yury S., et al. (2025), Alkali metal depletion in the deep Jovian atmosphere: The role of anions, Icarus, 425, 116334, doi:10.1016/j.icarus.2024.116334. | ADS Cites BibTeX DOI |
433) | Liu, Z. -Y., et al. (2024), Juno Observations of Jupiter’s Magnetodisk Plasma: Implications for Equilibrium and Dynamics, Journal of Geophysical Research (Space Physics), 129, 2024JA032976, doi:10.1029/2024JA032976. | ADS Cites BibTeX DOI |
432) | Ma, Q., et al. (2024), Survey of Whistler-Mode Wave Amplitudes and Frequency Spectra in Jupiter’s Magnetosphere, Geophysics Research Letters, 51, 2024GL111882, doi:10.1029/2024GL111882. | ADS Cites BibTeX DOI |
431) | Blöcker, A., et al. (2024), Plasmoids and Magnetic Field Dipolarizations During Juno’s First 47 Orbits: Is Ion Acceleration Always Observed in the Dipolarizations?, Journal of Geophysical Research (Space Physics), 129, e2024JA032853, doi:10.1029/2024JA032853. | ADS Cites BibTeX DOI |
430) | Daly, A., et al. (2024), Statistical Survey of Interchange Events in the Jovian Magnetosphere Using Juno Observations, Geophysics Research Letters, 51, e2024GL110300, doi:10.1029/2024GL110300. | ADS Cites BibTeX DOI |
429) | Provan, G. and Cowley, S.W.H. and Nichols, J.D. (2024), Juno Observations of Large-Scale Azimuthal Fields in Jupiter’s Nightside Magnetosphere and Related Radial Currents, Journal of Geophysical Research (Space Physics), 129, e2024JA032677, doi:10.1029/2024JA032677. | ADS Cites BibTeX DOI |
428) | Santos, A., et al. (2024), Characterizing the Magnetic and Plasma Environment Upstream of Ganymede, Journal of Geophysical Research (Space Physics), 129, e2024JA032689, doi:10.1029/2024JA032689. | ADS Cites BibTeX DOI |
427) | Wang, C.Q., et al. (2024), Magnetic Hole and Its Resultant Electron Pitch-Angle Distribution at Jupiter, Geophysics Research Letters, 51, e2024GL111372, doi:10.1029/2024GL111372. | ADS Cites BibTeX DOI |
426) | Wang, Jian-Zhao, et al. (2024), Dawn-Dusk Asymmetry of Plasma Flow in Jupiter’s Middle Magnetosphere Observed by Juno, Geophysics Research Letters, 51, e2024GL110209, doi:10.1029/2024GL110209. | ADS Cites BibTeX DOI |
425) | Park, Jaekyun, et al. (2024), Spatial and spectral characteristics of the Jovian polar haze inferred from 2-µm Juno/JIRAM spectro-images, Icarus, 420, 116139, doi:10.1016/j.icarus.2024.116139. | ADS Cites BibTeX DOI |
424) | Pettine, M., et al. (2024), JIRAM Observations of Volcanic Flux on Io: Distribution and Comparison to Tidal Heat Flow Models, Geophysics Research Letters, 51, e2023GL105782, doi:10.1029/2023GL105782. | ADS Cites BibTeX DOI |
423) | Montgomery, Jake, et al. (2024), Investigating Boundary Layer Properties at Jupiter’s Dawn Magnetopause, Journal of Geophysical Research (Space Physics), 129, e2024JA032926, doi:10.1029/2024JA032926. | ADS Cites BibTeX DOI |
422) | Sulaiman, A.H., et al. (2024), Io’s Near-Field Alfvén Wings and Local Electron Beams Inferred From Juno/Waves, Geophysics Research Letters, 51, e2024GL110206, doi:10.1029/2024GL110206. | ADS Cites BibTeX DOI |
421) | Szalay, J.R., et al. (2024), Ion Precipitation Into Io’s Poles Driven by a Strong Sub-Alfvénic Interaction, Geophysics Research Letters, 51, e2024GL110205, doi:10.1029/2024GL110205. | ADS Cites BibTeX DOI |
420) | Yuan, Zhigang, et al. (2024), Duct Effect of Magnetic Dips on the Propagation of EMIC Waves in Jupiter’s Magnetosphere With Observations of Juno, Geophysics Research Letters, 51, e2024GL109691, doi:10.1029/2024GL109691. | ADS Cites BibTeX DOI |
419) | Allegrini, F., et al. (2024), Electron Beams at Europa, Geophysics Research Letters, 51, e2024GL108422, doi:10.1029/2024GL108422. | ADS Cites BibTeX DOI |
418) | Ma, Q., et al. (2024), Generation and Impacts of Whistler-Mode Waves During Energetic Electron Injections in Jupiter’s Outer Radiation Belt, Journal of Geophysical Research (Space Physics), 129, e2024JA032624, doi:10.1029/2024JA032624. | ADS Cites BibTeX DOI |
417) | Paranicas, C., et al. (2024), Energetic Charged Particle Measurements During Juno’s Two Close Io Flybys, Geophysics Research Letters, 51, e2024GL109495, doi:10.1029/2024GL109495. | ADS Cites BibTeX DOI |
416) | Wang, Jian-Zhao, et al. (2024), Radial and Vertical Structures of Plasma Disk in Jupiter’s Middle Magnetosphere, Journal of Geophysical Research (Space Physics), 129, e2024JA032715, doi:10.1029/2024JA032715. | ADS Cites BibTeX DOI |
415) | Xu, Y., et al. (2024), In situ evidence of the magnetospheric cusp of Jupiter from Juno spacecraft measurements, Nature Communications, 15, 6062, doi:10.1038/s41467-024-50449-z. | ADS Cites BibTeX DOI |
414) | Styczinski, M.J. and Cochrane, C.J. (2024), PlanetMag: Software for Evaluation of Outer Planet Magnetic Fields and Corresponding Excitations at Their Moons, Earth and Space Science, 11, e2024EA003552, doi:10.1029/2024EA003552. | ADS Cites BibTeX DOI |
413) | Xu, Yan, et al. (2024), Revealing the Local Time Structure of the Alfvén Radius in Jupiter’s Magnetosphere Through High-Resolution Simulations, Journal of Geophysical Research (Planets), 129, e2024JE008368, doi:10.1029/2024JE008368. | ADS Cites BibTeX DOI |
412) | Collet, B., et al. (2024), A New Type of Jovian Hectometric Radiation Powered by Monoenergetic Electron Beams, Journal of Geophysical Research (Space Physics), 129, e2024JA032422, doi:10.1029/2024JA032422. | ADS Cites BibTeX DOI |
411) | Groulard, A., et al. (2024), Dawn-dusk asymmetry in the main auroral emissions at Jupiter observed with Juno-UVS, Icarus, 413, 116005, doi:10.1016/j.icarus.2024.116005. | ADS Cites BibTeX DOI |
410) | Herceg, M., et al. (2024), Europa’s Influence on the Jovian Energetic Electron Environment as Observed by Juno’s Micro Advanced Stellar Compass, Geophysics Research Letters, 51, e2023GL104685, doi:10.1029/2023GL104685. | ADS Cites BibTeX DOI |
409) | Kaminker, Vitaliy (2024), Examination of Magnetic Field Signatures and Local Plasma Distribution Variations in Jupiter’s Magnetosphere, Journal of Geophysical Research (Space Physics), 129, e2024JA032572, doi:10.1029/2024JA032572. | ADS Cites BibTeX DOI |
408) | Li, Cheng, et al. (2024), Super-adiabatic temperature gradient at Jupiter’s equatorial zone and implications for the water abundance, Icarus, 414, 116028, doi:10.1016/j.icarus.2024.116028. | ADS Cites BibTeX DOI |
407) | Pelcener, S., et al. (2024), Temporal and Spatial Variability of the Electron Environment at the Orbit of Ganymede as Observed by Juno, Journal of Geophysical Research (Space Physics), 129, e2023JA032043, doi:10.1029/2023JA032043. | ADS Cites BibTeX DOI |
406) | Rabia, J., et al. (2024), Properties of Electrons Accelerated by the Ganymede-Magnetosphere Interaction: Survey of Juno High-Latitude Observations, Journal of Geophysical Research (Space Physics), 129, e2024JA032604, doi:10.1029/2024JA032604. | ADS Cites BibTeX DOI |
405) | Szalay, J.R., et al. (2024), Oxygen production from dissociation of Europa’s water-ice surface, Nature Astronomy, 8, 567-576, doi:10.1038/s41550-024-02206-x. | ADS Cites BibTeX DOI |
404) | Wilson, R.J. (2024), Jovian current disk crossings as observed by Juno JADE-I, Icarus, 413, 116006, doi:10.1016/j.icarus.2024.116006. | ADS Cites BibTeX DOI |
403) | Boudouma, A., et al. (2024), Generation Mechanism and Beaming of Jovian nKOM From 3D Numerical Modeling of Juno/Waves Observations, Journal of Geophysical Research (Space Physics), 129, e2023JA032280, doi:10.1029/2023JA032280. | ADS Cites BibTeX DOI |
402) | Delamere, P.A., et al. (2024), Signatures of Open Magnetic Flux in Jupiter’s Dawnside Magnetotail, AGU Advances, 5, e2023AV001111, doi:10.1029/2023AV001111. | ADS Cites BibTeX DOI |
401) | Glocer, A., et al. (2024), Modeling Ion Conic Formation in Io’s Auroral Footprint, Journal of Geophysical Research (Space Physics), 129, e2023JA032322, doi:10.1029/2023JA032322. | ADS Cites BibTeX DOI |
400) | Helled, Ravit and Stevenson, David J. (2024), The Fuzzy Cores of Jupiter and Saturn, AGU Advances, 5, e2024AV001171, doi:10.1029/2024AV001171. | ADS Cites BibTeX DOI |
399) | Sun, J.W., et al. (2024), On the Global Features of the 10-60-Min ULF Waves in Jovian Magnetosphere: Juno Observations, Journal of Geophysical Research (Planets), 129, e2023JE008279, doi:10.1029/2023JE008279. | ADS Cites BibTeX DOI |
398) | Waite, J.H., et al. (2024), Magnetospheric-Ionospheric-Atmospheric Implications From the Juno Flyby of Ganymede, Journal of Geophysical Research (Planets), 129, e2023JE007859, doi:10.1029/2023JE007859. | ADS Cites BibTeX DOI |
397) | Wang, C.Q., et al. (2024), First Observation of Electron Rolling-Pin Distribution in Jupiter’s Magnetosphere, Geophysics Research Letters, 51, e2024GL108430, doi:10.1029/2024GL108430. | ADS Cites BibTeX DOI |
396) | Wang, Jian-zhao, et al. (2024), Forward Modeling of 3-D Ion Properties in Jupiter’s Magnetosphere Using Juno/JADE-I Data, Journal of Geophysical Research (Space Physics), 129, e2023JA032218, doi:10.1029/2023JA032218. | ADS Cites BibTeX DOI |
395) | Wicht, J. and Christensen, U.R. (2024), Contributions of Jupiter’s Deep-Reaching Surface Winds to Magnetic Field Structure and Secular Variation, Journal of Geophysical Research (Planets), 129, e2023JE007890, doi:10.1029/2023JE007890. | ADS Cites BibTeX DOI |
394) | Hansen, C.J., et al. (2024), Juno’s JunoCam Images of Europa, The Planetary Science Journal, 5, 76, doi:10.3847/PSJ/ad24f4. | ADS Cites BibTeX DOI |
393) | Militzer, Burkhard and Hubbard, William B. (2024), Study of Jupiter’s interior: Comparison of 2, 3, 4, 5, and 6 layer models, Icarus, 411, 115955, doi:10.1016/j.icarus.2024.115955. | ADS Cites BibTeX DOI |
392) | Moirano, A., et al. (2024), The Infrared Auroral Footprint Tracks of Io, Europa and Ganymede at Jupiter Observed by Juno-JIRAM, Journal of Geophysical Research (Planets), 129, e2023JE008130, doi:10.1029/2023JE00813010.22541/essoar.168394732.26574509/v1. | ADS Cites BibTeX DOI |
391) | Sarkango, Y., et al. (2024), Resonant Plasma Acceleration at Jupiter Driven by Satellite-Magnetosphere Interactions, Geophysics Research Letters, 51, e2023GL107431, doi:10.1029/2023GL107431. | ADS Cites BibTeX DOI |
390) | Szalay, J.R., et al. (2024), Europa Modifies Jupiter’s Plasma Sheet, Geophysics Research Letters, 51, e2023GL105809, doi:10.1029/2023GL105809. | ADS Cites BibTeX DOI |
389) | Enghoff, Martin B., et al. (2024), Cutoff Rigidities, Galactic Cosmic Ray Flux, and Heavy Ion Detections at Jupiter, Journal of Geophysical Research (Planets), 129, e2023JE008085, doi:10.1029/2023JE008085. | ADS Cites BibTeX DOI |
388) | Addison, Peter, et al. (2024), Magnetic Signatures of the Interaction Between Europa and Jupiter’s Magnetosphere During the Juno Flyby, Geophysics Research Letters, 51, e2023GL106810, doi:10.1029/2023GL106810. | ADS Cites BibTeX DOI |
387) | Davies, Ashley Gerard, et al. (2024), Io’s polar volcanic thermal emission indicative of magma ocean and shallow tidal heating models, Nature Astronomy, 8, 94-100, doi:10.1038/s41550-023-02123-5. | ADS Cites BibTeX DOI |
386) | Gu, W.D., et al. (2024), A Survey of Magnetic Field Line Curvature in Jovian Dawn Magnetodisc, Geophysics Research Letters, 51, e2023GL106971, doi:10.1029/2023GL106971. | ADS Cites BibTeX DOI |
385) | Palmaerts, B., et al. (2024), Overview of a large observing campaign of Jupiter’s aurora with the Hubble Space Telescope combined with Juno-UVS data, Icarus, 408, 115815, doi:10.1016/j.icarus.2023.115815. | ADS Cites BibTeX DOI |
384) | Becker, Heidi N., et al. (2023), A Complex Region of Europa’s Surface With Hints of Recent Activity Revealed by Juno’s Stellar Reference Unit, Journal of Geophysical Research (Planets), 128, e2023JE008105, doi:10.1029/2023JE008105. | ADS Cites BibTeX DOI |
383) | Daly, A., et al. (2023), Plasma Wave and Particle Dynamics During Interchange Events in the Jovian Magnetosphere Using Juno Observations, Geophysics Research Letters, 50, e2023GL103894, doi:10.1029/2023GL103894. | ADS Cites BibTeX DOI |
382) | Kurth, W.S., et al. (2023), Juno Plasma Wave Observations at Europa, Geophysics Research Letters, 50, e2023GL105775, doi:10.1029/2023GL105775. | ADS Cites BibTeX DOI |
381) | Louis, C.K., et al. (2023), Source of Radio Emissions Induced by the Galilean Moons Io, Europa and Ganymede: In Situ Measurements by Juno, Journal of Geophysical Research (Space Physics), 128, e2023JA031985, doi:10.1029/2023JA031985. | ADS Cites BibTeX DOI |
380) | McEntee, S.C., et al. (2023), Long Exposure Chandra X-Ray Observation of Jupiter’s Auroral Emissions During Juno Plasmasheet Encounters in September 2021, Journal of Geophysical Research (Space Physics), 128, e2023JA031901, doi:10.1029/2023JA031901. | ADS Cites BibTeX DOI |
379) | Stahl, Aaron, et al. (2023), A Model of Ganymede’s Magnetic and Plasma Environment During the Juno PJ34 Flyby, Journal of Geophysical Research (Space Physics), 128, e2023JA032113, doi:10.1029/2023JA032113. | ADS Cites BibTeX DOI |
378) | Paranicas, C., et al. (2023), Energetic Electrons Near Europa From Juno JEDI Data, Geophysics Research Letters, 50, e2023GL105598, doi:10.1029/2023GL105598. | ADS Cites BibTeX DOI |
377) | Parisi, M., et al. (2023), Radio Occultation Measurements of Europa’s Ionosphere From Juno’s Close Flyby, Geophysics Research Letters, 50, e2023GL106637, doi:10.1029/2023GL106637. | ADS Cites BibTeX DOI |
376) | Weigt, D.M., et al. (2023), Identifying the Variety of Jovian X-Ray Auroral Structures: Tying the Morphology of X-Ray Emissions to Associated Magnetospheric Dynamics, Journal of Geophysical Research (Space Physics), 128, e2023JA031656, doi:10.1029/2023JA03165610.22541/essoar.168298676.61403547/v1. | ADS Cites BibTeX DOI |
375) | Gavriel, Nimrod and Kaspi, Yohai (2023), The Westward Drift of Jupiter’s Polar Cyclones Explained by a Center-of-Mass Approach, Geophysics Research Letters, 50, e2023GL103635, doi:10.1029/2023GL103635. | ADS Cites BibTeX DOI |
374) | Liu, Z. -Y. and Blanc, M. and Zong, Q. -G. (2023), A Juno-Era View of Electric Currents in Jupiter’s Magnetodisk, Journal of Geophysical Research (Space Physics), 128, e2023JA031436, doi:10.1029/2023JA03143610.22541/essoar.167751577.72637945/v1. | ADS Cites BibTeX DOI |
373) | Nichols, J.D., et al. (2023), Jovian Magnetospheric Injections Observed by the Hubble Space Telescope and Juno, Geophysics Research Letters, 50, e2023GL105549, doi:10.1029/2023GL105549. | ADS Cites BibTeX DOI |
372) | Louis, C.K., et al. (2023), Effect of a Magnetospheric Compression on Jovian Radio Emissions: In Situ Case Study Using Juno Data, Journal of Geophysical Research (Space Physics), 128, e2022JA031155, doi:10.1029/2022JA031155. | ADS Cites BibTeX DOI |
371) | Wang, Yujie, et al. (2023), Jupiter’s Coordinate System Transformations: A Guide for Future Studies of the Jovian System, Earth and Space Science, 10, e2023EA003147, doi:10.1029/2023EA003147. | ADS Cites BibTeX DOI |
370) | Haewsantati, K., et al. (2023), Juno’s Multi-Instruments Observations During the Flybys of Auroral Bright Spots in Jupiter’s Polar Aurorae, Journal of Geophysical Research (Space Physics), 128, e2023JA031396, doi:10.1029/2023JA031396. | ADS Cites BibTeX DOI |
369) | Moirano, A., et al. (2023), Variability of the Auroral Footprint of Io Detected by Juno-JIRAM and Modeling of the Io Plasma Torus, Journal of Geophysical Research (Space Physics), 128, e2023JA031288, doi:10.1029/2023JA031288. | ADS Cites BibTeX DOI |
368) | Montgomery, J., et al. (2023), Investigating the Occurrence of Kelvin-Helmholtz Instabilities at Jupiter’s Dawn Magnetopause, Geophysics Research Letters, 50, e2023GL102921, doi:10.1029/2023GL102921. | ADS Cites BibTeX DOI |
367) | Xu, Y., et al. (2023), On the Relation Between Jupiter’s Aurora and the Dawnside Current Sheet, Geophysics Research Letters, 50, e2023GL104123, doi:10.1029/2023GL104123. | ADS Cites BibTeX DOI |
366) | Brown, Shannon, et al. (2023), Microwave Observations of Ganymede’s Sub-Surface Ice: I. Ice Temperature and Structure, Journal of Geophysical Research (Planets), 128, e2022JE007609, doi:10.1029/2022JE007609. | ADS Cites BibTeX DOI |
365) | Rabia, J., et al. (2023), Evidence for Non-Monotonic and Broadband Electron Distributions in the Europa Footprint Tail Revealed by Juno In Situ Measurements, Geophysics Research Letters, 50, e2023GL103131, doi:10.1029/2023GL103131. | ADS Cites BibTeX DOI |
364) | Sarkango, Y., et al. (2023), Proton Equatorial Pitch Angle Distributions in Jupiter’s Inner Magnetosphere, Geophysics Research Letters, 50, e2023GL104374, doi:10.1029/2023GL104374. | ADS Cites BibTeX DOI |
363) | Zhang, Zhimeng, et al. (2023), Microwave Observations of Ganymede’s Sub-surface Ice: 2. Reflected Radiation, Geophysics Research Letters, 50, e2022GL101565, doi:10.1029/2022GL101565. | ADS Cites BibTeX DOI |
362) | Hue, V., et al. (2023), The Io, Europa, and Ganymede Auroral Footprints at Jupiter in the Ultraviolet: Positions and Equatorial Lead Angles, Journal of Geophysical Research (Space Physics), 128, e2023JA031363, doi:10.1029/2023JA031363. | ADS Cites BibTeX DOI |
361) | Menietti, J.D., et al. (2023), Wave and Particle Analysis of Z-Mode and O-Mode Emission in the Jovian Inner Magnetosphere, Journal of Geophysical Research (Space Physics), 128, e2022JA031199, doi:10.1029/2022JA031199. | ADS Cites BibTeX DOI |
360) | Sulaiman, A.H., et al. (2023), Poynting Fluxes, Field-Aligned Current Densities, and the Efficiency of the Io-Jupiter Electrodynamic Interaction, Geophysics Research Letters, 50, e2023GL103456, doi:10.1029/2023GL103456. | ADS Cites BibTeX DOI |
359) | Blöcker, A., et al. (2023), Dipolarization Fronts in the Jovian Magnetotail: Statistical Survey of Ion Intensity Variations Using Juno Observations, Journal of Geophysical Research (Space Physics), 128, e2023JA031312, doi:10.1029/2023JA031312. | ADS Cites BibTeX DOI |
358) | Lysak, R.L., et al. (2023), A Numerical Model for the Interaction of Io-Generated Alfvén Waves With Jupiter’s Magnetosphere and Ionosphere, Journal of Geophysical Research (Space Physics), 128, e2022JA031180, doi:10.1029/2022JA031180. | ADS Cites BibTeX DOI |
357) | Mauk, B.H., et al. (2023), How Bi-Modal Are Jupiter’s Main Aurora Zones?, Journal of Geophysical Research (Space Physics), 128, e2022JA031237, doi:10.1029/2022JA031237. | ADS Cites BibTeX DOI |
356) | Andrés, N., et al. (2023), Observation of Turbulent Magnetohydrodynamic Cascade in the Jovian Magnetosheath, Astrophysical Journal, 945, 8, doi:10.3847/1538-4357/acb7e0. | ADS Cites BibTeX DOI |
355) | Artemyev, A.V., et al. (2023), Force-Free Current Sheets in the Jovian Magnetodisk: The Key Role of Electron Field-Aligned Anisotropy, Journal of Geophysical Research (Space Physics), 128, e2022JA031280, doi:10.1029/2022JA031280. | ADS Cites BibTeX DOI |
354) | Clark, G., et al. (2023), Energetic proton acceleration by EMIC waves in Io’s footprint tail, Frontiers in Astronomy and Space Sciences, 10, 7, doi:10.3389/fspas.2023.1016345. | ADS Cites BibTeX DOI |
353) | Galanti, E. and Kaspi, Y. and Guillot, T. (2023), The Shape of Jupiter and Saturn Based on Atmospheric Dynamics, Radio Occultations and Gravity Measurements, Geophysics Research Letters, 50, e2022GL102321, doi:10.1029/2022GL102321. | ADS Cites BibTeX DOI |
352) | Li, W., et al. (2023), Driver of Energetic Electron Precipitation in the Vicinity of Ganymede, Geophysics Research Letters, 50, e2022GL101555, doi:10.1029/2022GL101555. | ADS Cites BibTeX DOI |
351) | Migliorini, A., et al. (2023), First Observations of CH4 and H3+ Spatially Resolved Emission Layers at Jupiter Equator, as Seen by JIRAM/Juno, Journal of Geophysical Research (Planets), 128, e2022JE007509, doi:10.1029/2022JE007509. | ADS Cites BibTeX DOI |
350) | Giles, Rohini S., et al. (2023), Enhanced C2H2 Absorption Within Jupiter’s Southern Auroral Oval From Juno UVS Observations, Journal of Geophysical Research (Planets), 128, e2022JE007610, doi:10.1029/2022JE007610. | ADS Cites BibTeX DOI |
349) | Gu, W.D., et al. (2023), Hourly Periodic Variations of Ultralow-Frequency (ULF) Waves in Jupiter’s Magnetosheath, Journal of Geophysical Research (Planets), 128, e2022JE007625, doi:10.1029/2022JE007625. | ADS Cites BibTeX DOI |
348) | Janalizadeh, Reza and Pasko, Victor P. (2023), Preliminary Modeling of Magnetized Sprite Streamers on Jupiter Following Juno’s Observations of Possible Transient Luminous Events, Journal of Geophysical Research (Space Physics), 128, e2022JA031009, doi:10.1029/2022JA031009. | ADS Cites BibTeX DOI |
347) | Moeckel, Chris and de Pater, Imke and DeBoer, David (2023), Ammonia Abundance Derived from Juno MWR and VLA Observations of Jupiter, The Planetary Science Journal, 4, 25, doi:10.3847/PSJ/acaf6b. | ADS Cites BibTeX DOI |
346) | Rensen, Frank, et al. (2023), The Deep Atmospheric Composition of Jupiter from Thermochemical Calculations Based on Galileo and Juno Data, Remote Sensing, 15, 841, doi:10.3390/rs15030841. | ADS Cites BibTeX DOI |
345) | Schok, A.A., et al. (2023), Periodicities and Plasma Density Structure of Jupiter’s Dawnside Magnetosphere, Journal of Geophysical Research (Planets), 128, e2022JE007637, doi:10.1029/2022JE007637. | ADS Cites BibTeX DOI |
344) | Wilson, R.J., et al. (2023), Internal and External Jovian Magnetic Fields: Community Code to Serve the Magnetospheres of the Outer Planets Community, Space Science Reviews, 219, 15, doi:10.1007/s11214-023-00961-3. | ADS Cites BibTeX DOI |
343) | Gérard, J. -C., et al. (2023), H3+ cooling in the jovian aurora: Juno remote sensing observations and modeling, Icarus, 389, 115261, doi:10.1016/j.icarus.2022.115261. | ADS Cites BibTeX DOI |
342) | Kurth, W.S., et al. (2023), Evidence of fresh injections related to the interchange instability in the Io torus, Planetary, 103104, doi:10.25546/103104. | ADS Cites BibTeX DOI |
341) | Zambon, F., et al. (2023), Io Hot Spot Distribution Detected by Juno/JIRAM, Geophysics Research Letters, 50, e2022GL100597, doi:10.1029/2022GL100597. | ADS Cites BibTeX DOI |
340) | Allegrini, F., et al. (2022), Plasma Observations During the 7 June 2021 Ganymede Flyby From the Jovian Auroral Distributions Experiment (JADE) on Juno, Geophysics Research Letters, 49, e2022GL098682, doi:10.1029/2022GL098682. | ADS Cites BibTeX DOI |
339) | Becker, Heidi N., et al. (2022), Surface Features of Ganymede Revealed in Jupiter-Shine by Juno’s Stellar Reference Unit, Geophysics Research Letters, 49, e2022GL099139, doi:10.1029/2022GL099139. | ADS Cites BibTeX DOI |
338) | Buccino, D.R., et al. (2022), Ganymede’s Ionosphere Observed by a Dual-Frequency Radio Occultation With Juno, Geophysics Research Letters, 49, e2022GL098420, doi:10.1029/2022GL098420. | ADS Cites BibTeX DOI |
337) | Clark, G., et al. (2022), Energetic Charged Particle Observations During Juno’s Close Flyby of Ganymede, Geophysics Research Letters, 49, e2022GL098572, doi:10.1029/2022GL098572. | ADS Cites BibTeX DOI |
336) | Duling, Stefan, et al. (2022), Ganymede MHD Model: Magnetospheric Context for Juno’s PJ34 Flyby, Geophysics Research Letters, 49, e2022GL101688, doi:10.1029/2022GL101688. | ADS Cites BibTeX DOI |
335) | Ebert, R.W., et al. (2022), Evidence for Magnetic Reconnection at Ganymede’s Upstream Magnetopause During the PJ34 Juno Flyby, Geophysics Research Letters, 49, e2022GL099775, doi:10.1029/2022GL099775. | ADS Cites BibTeX DOI |
334) | Gomez Casajus, L., et al. (2022), Gravity Field of Ganymede After the Juno Extended Mission, Geophysics Research Letters, 49, e2022GL099475, doi:10.1029/2022GL099475. | ADS Cites BibTeX DOI |
333) | Greathouse, T.K., et al. (2022), UVS Observations of Ganymede’s Aurora During Juno Orbits 34 and 35, Geophysics Research Letters, 49, e2022GL099794, doi:10.1029/2022GL099794. | ADS Cites BibTeX DOI |
332) | Hansen, C.J., et al. (2022), Juno’s Close Encounter With Ganymede – An Overview, Geophysics Research Letters, 49, e2022GL099285, doi:10.1029/2022GL099285. | ADS Cites BibTeX DOI |
331) | Herceg, M., et al. (2022), Energetic electron lensing caused by Ganymede’s magnetic field, Planetary Space Science, 224, 105597, doi:10.1016/j.pss.2022.105597. | ADS Cites BibTeX DOI |
330) | Janser, S., et al. (2022), Properties of Turbulent Alfvénic Fluctuations and Wave-Particle Interaction Associated With Io’s Footprint Tail, Journal of Geophysical Research (Space Physics), 127, e2022JA030675, doi:10.1029/2022JA030675. | ADS Cites BibTeX DOI |
329) | Kamran, A., et al. (2022), Auroral Field-Aligned Current Signatures in Jupiter’s Magnetosphere: Juno Magnetic Field Observations and Physical Modeling, Journal of Geophysical Research (Space Physics), 127, e2022JA030431, doi:10.1029/2022JA030431. | ADS Cites BibTeX DOI |
328) | King, Oliver and Fletcher, Leigh N. (2022), Global Modeling of Ganymede’s Surface Composition: Near-IR Mapping From VLT/SPHERE, Journal of Geophysical Research (Planets), 127, e2022JE007323, doi:10.1029/2022JE007323. | ADS Cites BibTeX DOI |
327) | Kollmann, P., et al. (2022), Ganymede’s Radiation Cavity and Radiation Belts, Geophysics Research Letters, 49, e2022GL098474, doi:10.1029/2022GL098474. | ADS Cites BibTeX DOI |
326) | Kurth, W.S., et al. (2022), Juno Plasma Wave Observations at Ganymede, Geophysics Research Letters, 49, e2022GL098591, doi:10.1029/2022GL098591. | ADS Cites BibTeX DOI |
325) | Molyneux, P.M., et al. (2022), Ganymede’s UV Reflectance From Juno-UVS Data, Geophysics Research Letters, 49, e2022GL099532, doi:10.1029/2022GL099532. | ADS Cites BibTeX DOI |
324) | Paranicas, C., et al. (2022), Energetic Charged Particle Fluxes Relevant to Ganymede’s Polar Region, Geophysics Research Letters, 49, e2022GL098077, doi:10.1029/2022GL098077. | ADS Cites BibTeX DOI |
323) | Ravine, M.A., et al. (2022), Ganymede Observations by JunoCam on Juno Perijove 34, Geophysics Research Letters, 49, e2022GL099211, doi:10.1029/2022GL099211. | ADS Cites BibTeX DOI |
322) | Romanelli, N., et al. (2022), Juno Magnetometer Observations at Ganymede: Comparisons With a Global Hybrid Simulation and Indications of Magnetopause Reconnection, Geophysics Research Letters, 49, e2022GL099545, doi:10.1029/2022GL099545. | ADS Cites BibTeX DOI |
321) | Saur, Joachim, et al. (2022), Alternating North-South Brightness Ratio of Ganymede’s Auroral Ovals: Hubble Space Telescope Observations Around the Juno PJ34 Flyby, Geophysics Research Letters, 49, e2022GL098600, doi:10.1029/2022GL098600. | ADS Cites BibTeX DOI |
320) | Valek, P.W., et al. (2022), In Situ Ion Composition Observations of Ganymede’s Outflowing Ionosphere, Geophysics Research Letters, 49, e2022GL100281, doi:10.1029/2022GL100281. | ADS Cites BibTeX DOI |
319) | Vogt, Marissa F. and Bagenal, Fran and Bolton, Scott J. (2022), Magnetic Field Conditions Upstream of Ganymede, Journal of Geophysical Research (Space Physics), 127, e2022JA030497, doi:10.1029/2022JA030497. | ADS Cites BibTeX DOI |
318) | Weber, Tristan, et al. (2022), Updated Spherical Harmonic Magnetic Field Moments of Ganymede From the Juno Flyby, Geophysics Research Letters, 49, e2022GL098633, doi:10.1029/2022GL098633. | ADS Cites BibTeX DOI |
317) | Ingersoll, Andrew P., et al. (2022), Vorticity and divergence at scales down to 200 km within and around the polar cyclones of Jupiter, Nature Astronomy, 6, 1280-1286, doi:10.1038/s41550-022-01774-0. | ADS Cites BibTeX DOI |
316) | Iñurrigarro, Peio, et al. (2022), Convective storms in closed cyclones in Jupiter: (II) numerical modeling, Icarus, 386, 115169, doi:10.1016/j.icarus.2022.115169. | ADS Cites BibTeX DOI |
315) | Momoki, Naoya and Toh, Hiroaki (2022), Updated Model Parameters of Current Sheet and Magnetic Field in the Jovian Magnetosphere for Pre-Galileo, Galileo, and Juno Eras, Journal of Geophysical Research (Planets), 127, e2022JE007493, doi:10.1029/2022JE007493. | ADS Cites BibTeX DOI |
314) | Moore, K.M., et al. (2022), Dynamo Simulations of Jupiter’s Magnetic Field: The Role of Stable Stratification and a Dilute Core, Journal of Geophysical Research (Planets), 127, e2022JE007479, doi:10.1029/2022JE007479. | ADS Cites BibTeX DOI |
313) | Al Saati, S., et al. (2022), Magnetosphere-Ionosphere-Thermosphere Coupling Study at Jupiter Based on Juno’s First 30 Orbits and Modeling Tools, Journal of Geophysical Research (Space Physics), 127, e2022JA030586, doi:10.1029/2022JA030586. | ADS Cites BibTeX DOI |
312) | Ma, X., et al. (2022), Jupiter’s Sheared Flow Unstable Magnetopause Boundary Observed by Juno, Journal of Geophysical Research (Space Physics), 127, e2022JA030719, doi:10.1029/2022JA030719. | ADS Cites BibTeX DOI |
311) | Muñoz, J.R., et al. (2022), A Survey of Electron Conics at Jupiter Utilizing the JADE-E Data During Science Orbits 01, 03-30, Journal of Geophysical Research (Space Physics), 127, e2022JA030418, doi:10.1029/2022JA030418. | ADS Cites BibTeX DOI |
310) | Yao, Z.H., et al. (2022), On the Relation Between Auroral Morphologies and Compression Conditions of Jupiter’s Magnetopause: Observations From Juno and the Hubble Space Telescope, Journal of Geophysical Research (Space Physics), 127, e2021JA029894, doi:10.1029/2021JA029894. | ADS Cites BibTeX DOI |
309) | Mura, A., et al. (2022), Five Years of Observations of the Circumpolar Cyclones of Jupiter, Journal of Geophysical Research (Planets), 127, e07241, doi:10.1029/2022JE007241. | ADS Cites BibTeX DOI |
308) | Bandyopadhyay, R., et al. (2022), Beta-Dependent Constraints on Ion Temperature Anisotropy in Jupiter’s Magnetosheath, Geophysics Research Letters, 49, e98053, doi:10.1029/2022GL098053. | ADS Cites BibTeX DOI |
307) | Blöcker, A., et al. (2022), Plasmoids in the Jovian Magnetotail: Statistical Survey of Ion Acceleration Using Juno Observations, Journal of Geophysical Research (Space Physics), 127, e30460, doi:10.1029/2022JA030460. | ADS Cites BibTeX DOI |
306) | Durante, Daniele, et al. (2022), Juno spacecraft gravity measurements provide evidence for normal modes of Jupiter, Nature Communications, 13, 4632, doi:10.1038/s41467-022-32299-9. | ADS Cites BibTeX DOI |
305) | Gavriel, Nimrod and Kaspi, Yohai (2022), The Oscillatory Motion of Jupiter’s Polar Cyclones Results From Vorticity Dynamics, Geophysics Research Letters, 49, e98708, doi:10.1029/2022GL098708. | ADS Cites BibTeX DOI |
304) | Militzer, Burkhard, et al. (2022), Juno Spacecraft Measurements of Jupiter’s Gravity Imply a Dilute Core, The Planetary Science Journal, 3, 185, doi:10.3847/PSJ/ac7ec8. | ADS Cites BibTeX DOI |
303) | Salveter, A., et al. (2022), Jovian Auroral Electron Precipitation Budget—A Statistical Analysis of Diffuse, Mono-Energetic, and Broadband Auroral Electron Distributions, Journal of Geophysical Research (Space Physics), 127, e30224, doi:10.1029/2021JA030224. | ADS Cites BibTeX DOI |
302) | Scarica, P., et al. (2022), Stability of the Jupiter Southern Polar Vortices Inspected Through Vorticity Using Juno/JIRAM Data, Journal of Geophysical Research (Planets), 127, e07159, doi:10.1029/2021JE007159. | ADS Cites BibTeX DOI |
301) | Sharan, S., et al. (2022), The Internal Structure and Dynamics of Jupiter Unveiled by a High-Resolution Magnetic Field and Secular Variation Model, Geophysics Research Letters, 49, e98839, doi:10.1029/2022GL098839. | ADS Cites BibTeX DOI |
300) | Shen, Xiao-Chen, et al. (2022), Energetic Proton Distributions in the Inner and Middle Magnetosphere of Jupiter Using Juno Observations, Geophysics Research Letters, 49, e99832, doi:10.1029/2022GL099832. | ADS Cites BibTeX DOI |
299) | Sulaiman, A.H., et al. (2022), Jupiter’s Low-Altitude Auroral Zones: Fields, Particles, Plasma Waves, and Density Depletions, Journal of Geophysical Research (Space Physics), 127, e30334, doi:10.1029/2022JA030334. | ADS Cites BibTeX DOI |
298) | Hueso, Ricardo, et al. (2022), Convective storms in closed cyclones in Jupiter’s South Temperate Belt: (I) observations, Icarus, 380, 114994, doi:10.1016/j.icarus.2022.114994. | ADS Cites BibTeX DOI |
297) | Montgomery, J., et al. (2022), Investigating the Occurrence of Magnetic Reconnection at Jupiter’s Dawn Magnetopause During the Juno Era, Geophysics Research Letters, 49, e99141, doi:10.1029/2022GL099141. | ADS Cites BibTeX DOI |
296) | Lorch, C.T.S., et al. (2022), Evidence of Alfvénic Activity in Jupiter’s Mid-To-High Latitude Magnetosphere, Journal of Geophysical Research (Space Physics), 127, e29853, doi:10.1029/2021JA029853. | ADS Cites BibTeX DOI |
295) | Miguel, Y., et al. (2022), Jupiter’s inhomogeneous envelope, Astronomy and Astrophysics, 662, A18, doi:10.1051/0004-6361/202243207. | ADS Cites BibTeX DOI |
294) | Bloxham, Jeremy, et al. (2022), Differential Rotation in Jupiter’s Interior Revealed by Simultaneous Inversion for the Magnetic Field and Zonal Flux Velocity, Journal of Geophysical Research (Planets), 127, e07138, doi:10.1029/2021JE007138. | ADS Cites BibTeX DOI |
293) | Helled, Ravit, et al. (2022), Revelations on Jupiter’s formation, evolution and interior: Challenges from Juno results, Icarus, 378, 114937, doi:10.1016/j.icarus.2022.114937. | ADS Cites BibTeX DOI |
292) | Mauk, B.H., et al. (2022), Loss of Energetic Ions Comprising the Ring Current Populations of Jupiter’s Middle and Inner Magnetosphere, Journal of Geophysical Research (Space Physics), 127, e30293, doi:10.1029/2022JA030293. | ADS Cites BibTeX DOI |
291) | Szalay, J.R., et al. (2022), Closed Fluxtubes and Dispersive Proton Conics at Jupiter’s Polar Cap, Geophysics Research Letters, 49, e98741, doi:10.1029/2022GL098741. | ADS Cites BibTeX DOI |
290) | Szalay, J.R., et al. (2022), Water-Group Pickup Ions From Europa-Genic Neutrals Orbiting Jupiter, Geophysics Research Letters, 49, e98111, doi:10.1029/2022GL098111. | ADS Cites BibTeX DOI |
289) | Hue, V., et al. (2022), A Comprehensive Set of Juno In Situ and Remote Sensing Observations of the Ganymede Auroral Footprint, Geophysics Research Letters, 49, e96994, doi:10.1029/2021GL096994. | ADS Cites BibTeX DOI |
288) | Lamy, L., et al. (2022), Determining the Beaming of Io Decametric Emissions: A Remote Diagnostic to Probe the Io-Jupiter Interaction, Journal of Geophysical Research (Space Physics), 127, e30160, doi:10.1029/2021JA030160. | ADS Cites BibTeX DOI |
287) | Siegelman, Lia and Young, William R. and Ingersoll, Andrew P. (2022), Polar vortex crystals: Emergence and structure, Proceedings of the National Academy of Science, 119, e2120486119, doi:10.1073/pnas.2120486119. | ADS Cites BibTeX DOI |
286) | Sarkango, Yash, et al. (2022), Properties of Ion-Inertial Scale Plasmoids Observed by the Juno Spacecraft in the Jovian Magnetotail, Journal of Geophysical Research (Space Physics), 127, e30181, doi:10.1029/2021JA03018110.1002/essoar.10509272.1. | ADS Cites BibTeX DOI |
285) | Connerney, J.E.P., et al. (2022), A New Model of Jupiter’s Magnetic Field at the Completion of Juno’s Prime Mission, Journal of Geophysical Research (Planets), 127, e07055, doi:10.1029/2021JE007055. | ADS Cites BibTeX DOI |
284) | Wang, Jian-zhao and Huo, Zhuo-xi and Zhang, Lei (2022), An empirical model of the current sheet in Jupiter’s magnetosphere, Planetary Space Science, 211, 105395, doi:10.1016/j.pss.2021.105395. | ADS Cites BibTeX DOI |
283) | Nichols, J.D. and Cowley, S.W.H. (2022), Relation of Jupiter’s Dawnside Main Emission Intensity to Magnetospheric Currents During the Juno Mission, Journal of Geophysical Research (Space Physics), 127, e30040, doi:10.1029/2021JA030040. | ADS Cites BibTeX DOI |
282) | Rogers, J.H., et al. (2022), Flow patterns of Jupiter’s south polar region, Icarus, 372, 114742, doi:10.1016/j.icarus.2021.114742. | ADS Cites BibTeX DOI |
281) | Siegelman, Lia, et al. (2022), Moist convection drives an upscale energy transfer at Jovian high latitudes, Nature Physics, 18, 357-361, doi:10.1038/s41567-021-01458-y. | ADS Cites BibTeX DOI |
280) | Buccino, D.R., et al. (2021), Performance of Earth Troposphere Calibration Measurements With the Advanced Water Vapor Radiometer for the Juno Gravity Science Investigation, Radio Science, 56, e07387, doi:10.1029/2021RS007387. | ADS Cites BibTeX DOI |
279) | Duer, Keren, et al. (2021), Evidence for Multiple Ferrel-Like Cells on Jupiter, Geophysics Research Letters, 48, e95651, doi:10.1029/2021GL095651. | ADS Cites BibTeX DOI |
278) | Ebert, R.W., et al. (2021), Simultaneous UV Images and High-Latitude Particle and Field Measurements During an Auroral Dawn Storm at Jupiter, Journal of Geophysical Research (Space Physics), 126, e29679, doi:10.1029/2021JA02967910.1002/essoar.10503105.2. | ADS Cites BibTeX DOI |
277) | Greathouse, Thomas, et al. (2021), Local Time Dependence of Jupiter’s Polar Auroral Emissions Observed by Juno UVS, Journal of Geophysical Research (Planets), 126, e06954, doi:10.1029/2021JE00695410.1002/essoar.10507057.1. | ADS Cites BibTeX DOI |
276) | Ingersoll, Andrew P., et al. (2021), Jupiter’s Overturning Circulation: Breaking Waves Take the Place of Solid Boundaries, Geophysics Research Letters, 48, e95756, doi:10.1029/2021GL095756. | ADS Cites BibTeX DOI |
275) | Lysak, R.L., et al. (2021), The Jovian Ionospheric Alfvén Resonator and Auroral Particle Acceleration, Journal of Geophysical Research (Space Physics), 126, e29886, doi:10.1029/2021JA02988610.1002/essoar.10507765.1. | ADS Cites BibTeX DOI |
274) | Ma, Q., et al. (2021), Energetic Electron Distributions Near the Magnetic Equator in the Jovian Plasma Sheet and Outer Radiation Belt Using Juno Observations, Geophysics Research Letters, 48, e95833, doi:10.1029/2021GL095833. | ADS Cites BibTeX DOI |
273) | Moore, K.M., et al. (2021), Publisher Correction: Time variation of Jupiter’s internal magnetic field consistent with zonal wind advection, Nature Astronomy, 6, 288-288, doi:10.1038/s41550-021-01554-2. | ADS Cites BibTeX DOI |
272) | Yoon, P.H., et al. (2021), Quasilinear Model of Jovian Whistler Mode Emission, Journal of Geophysical Research (Space Physics), 126, e29930, doi:10.1029/2021JA029930. | ADS Cites BibTeX DOI |
271) | Bolton, S.J., et al. (2021), Microwave observations reveal the deep extent and structure of Jupiter’s atmospheric vortices, Science, 374, 968-972, doi:10.1126/science.abf1015. | ADS Cites BibTeX DOI |
270) | Kulowski, Laura, et al. (2021), Investigating Barotropic Zonal Flow in Jupiter’s Deep Atmosphere Using Juno Gravitational Data, Journal of Geophysical Research (Planets), 126, e06795, doi:10.1029/2020JE006795. | ADS Cites BibTeX DOI |
269) | Liu, Z. -Y., et al. (2021), Statistics on Jupiter’s Current Sheet With Juno Data: Geometry, Magnetic Fields and Energetic Particles, Journal of Geophysical Research (Space Physics), 126, e29710, doi:10.1029/2021JA029710. | ADS Cites BibTeX DOI |
268) | Menietti, J.D., et al. (2021), Analysis of Whistler-Mode and Z-Mode Emission in the Juno Primary Mission, Journal of Geophysical Research (Space Physics), 126, e29885, doi:10.1029/2021JA029885. | ADS Cites BibTeX DOI |
267) | Parisi, Marzia, et al. (2021), The depth of Jupiter’s Great Red Spot constrained by Juno gravity overflights, Science, 374, 964-968, doi:10.1126/science.abf1396. | ADS Cites BibTeX DOI |
266) | Pensionerov, I.A., et al. (2021), Axially Asymmetric Steady State Model of Jupiter’s Magnetosphere-Ionosphere Coupling, Journal of Geophysical Research (Space Physics), 126, e29608, doi:10.1029/2021JA02960810.1002/essoar.10507161.2. | ADS Cites BibTeX DOI |
265) | Fletcher, L.N., et al. (2021), Jupiter’s Temperate Belt/Zone Contrasts Revealed at Depth by Juno Microwave Observations, Journal of Geophysical Research (Planets), 126, e06858, doi:10.1029/2021JE006858. | ADS Cites BibTeX DOI |
264) | Li, Wen, et al. (2021), Quantification of Diffuse Auroral Electron Precipitation Driven by Whistler Mode Waves at Jupiter, Geophysics Research Letters, 48, e95457, doi:10.1029/2021GL095457. | ADS Cites BibTeX DOI |
263) | Louis, C.K., et al. (2021), Latitudinal Beaming of Jupiter’s Radio Emissions From Juno/Waves Flux Density Measurements, Journal of Geophysical Research (Space Physics), 126, e29435, doi:10.1029/2021JA02943510.1002/essoar.10506795.1. | ADS Cites BibTeX DOI |
262) | Moirano, A., et al. (2021), Morphology of the Io Plasma Torus From Juno Radio Occultations, Journal of Geophysical Research (Space Physics), 126, e29190, doi:10.1029/2021JA029190. | ADS Cites BibTeX DOI |
261) | Allegrini, F., et al. (2021), Electron Partial Density and Temperature Over Jupiter’s Main Auroral Emission Using Juno Observations, Journal of Geophysical Research (Space Physics), 126, e29426, doi:10.1029/2021JA029426. | ADS Cites BibTeX DOI |
260) | Moirano, Alessandro, et al. (2021), Morphology of the Auroral Tail of Io, Europa, and Ganymede From JIRAM L-Band Imager, Journal of Geophysical Research (Space Physics), 126, e29450, doi:10.1029/2021JA029450. | ADS Cites BibTeX DOI |
259) | Mousis, Olivier and Lunine, Jonathan I. and Aguichine, Artyom (2021), The Nature and Composition of Jupiter’s Building Blocks Derived from the Water Abundance Measurements by the Juno Spacecraft, Astrophysical Journal, 918, L23, doi:10.3847/2041-8213/ac1d50. | ADS Cites BibTeX DOI |
258) | Sampl, Manfred, et al. (2021), Juno Waves High Frequency Antenna Properties, Radio Science, 56, e07184, doi:10.1029/2020RS00718410.1002/essoar.10506936.1. | ADS Cites BibTeX DOI |
257) | Wang, Yuxian, et al. (2021), A Preliminary Study of Magnetosphere-Ionosphere-Thermosphere Coupling at Jupiter: Juno Multi-Instrument Measurements and Modeling Tools, Journal of Geophysical Research (Space Physics), 126, e29469, doi:10.1029/2021JA029469. | ADS Cites BibTeX DOI |
256) | Bandyopadhyay, R., et al. (2021), Observation of Kolmogorov Turbulence in the Jovian Magnetosheath From JADE Data, Geophysics Research Letters, 48, e95006, doi:10.1029/2021GL095006. | ADS Cites BibTeX DOI |
255) | Elliott, S.S., et al. (2021), The High-Latitude Extension of Jupiter’s Io Torus: Electron Densities Measured by Juno Waves, Journal of Geophysical Research (Space Physics), 126, e29195, doi:10.1029/2021JA029195. | ADS Cites BibTeX DOI |
254) | Gavriel, Nimrod and Kaspi, Yohai (2021), The number and location of Jupiter’s circumpolar cyclones explained by vorticity dynamics, Nature Geoscience, 14, 559-563, doi:10.1038/s41561-021-00781-6. | ADS Cites BibTeX DOI |
253) | Giles, Rohini S., et al. (2021), Meridional Variations of C2H2 in Jupiter’s Stratosphere From Juno UVS Observations, Journal of Geophysical Research (Planets), 126, e06928, doi:10.1029/2021JE006928. | ADS Cites BibTeX DOI |
252) | Huscher, E., et al. (2021), Survey of Juno Observations in Jupiter’s Plasma Disk: Density, Journal of Geophysical Research (Space Physics), 126, e29446, doi:10.1029/2021JA029446. | ADS Cites BibTeX DOI |
251) | Sulaiman, A.H., et al. (2021), Inferring Jovian Electron Densities Using Plasma Wave Spectra Obtained by the Juno/Waves Instrument, Journal of Geophysical Research (Space Physics), 126, e29263, doi:10.1029/2021JA029263. | ADS Cites BibTeX DOI |
250) | Guo, R.L., et al. (2021), Jupiter’s Double-Arc Aurora as a Signature of Magnetic Reconnection: Simultaneous Observations From HST and Juno, Geophysics Research Letters, 48, e93964, doi:10.1029/2021GL093964. | ADS Cites BibTeX DOI |
249) | Mura, A., et al. (2021), Oscillations and Stability of the Jupiter Polar Cyclones, Geophysics Research Letters, 48, e94235, doi:10.1029/2021GL094235. | ADS Cites BibTeX DOI |
248) | Yao, Zhonghua, et al. (2021), Revealing the source of Jupiter’s x-ray auroral flares, Science Advances, 7, eabf0851, doi:10.1126/sciadv.abf0851. | ADS Cites BibTeX DOI |
247) | Becker, Heidi N., et al. (2021), High Latitude Zones of GeV Heavy Ions at the Inner Edge of Jupiter’s Relativistic Electron Belt, Journal of Geophysical Research (Planets), 126, e06772, doi:10.1029/2020JE006772. | ADS Cites BibTeX DOI |
246) | Galanti, Eli, et al. (2021), Constraints on the Latitudinal Profile of Jupiter’s Deep Jets, Geophysics Research Letters, 48, e92912, doi:10.1029/2021GL09291210.1002/essoar.10506285.1. | ADS Cites BibTeX DOI |
245) | Grassi, Davide, et al. (2021), On the clouds and ammonia in Jupiter’s upper troposphere from Juno JIRAM reflectivity observations, Monthly Notices of the RAS, 503, 4892-4907, doi:10.1093/mnras/stab740. | ADS Cites BibTeX DOI |
244) | Notaro, Virginia, et al. (2021), Determination of Jupiter’s Mass from Juno Radio Tracking Data, Journal of Guidance Control Dynamics, 44, 1062-1067, doi:10.2514/1.G005311. | ADS Cites BibTeX DOI |
243) | Paranicas, C., et al. (2021), Energy Spectra Near Ganymede From Juno Data, Geophysics Research Letters, 48, e93021, doi:10.1029/2021GL093021. | ADS Cites BibTeX DOI |
242) | Wang, Jian-zhao and Huo, Zhuo-xi and Zhang, Lei (2021), A Modular Model of Jupiter’s Magnetospheric Magnetic Field Based on Juno Data, Journal of Geophysical Research (Space Physics), 126, e29085, doi:10.1029/2020JA02908510.1002/essoar.10506065.1. | ADS Cites BibTeX DOI |
241) | Gérard, J. -C., et al. (2021), Variability and Hemispheric Symmetry of the Pedersen Conductance in the Jovian Aurora, Journal of Geophysical Research (Space Physics), 126, e28949, doi:10.1029/2020JA028949. | ADS Cites BibTeX DOI |
240) | Swithenbank-Harris, B.G., et al. (2021), Simultaneous Observation of an Auroral Dawn Storm With the Hubble Space Telescope and Juno, Journal of Geophysical Research (Space Physics), 126, e28717, doi:10.1029/2020JA028717. | ADS Cites BibTeX DOI |
239) | Sánchez-Lavega, A., et al. (2021), Jupiter’s Great Red Spot: Strong Interactions With Incoming Anticyclones in 2019, Journal of Geophysical Research (Planets), 126, e06686, doi:10.1029/2020JE006686. | ADS Cites BibTeX DOI |
238) | Bonfond, B., et al. (2021), Are Dawn Storms Jupiter’s Auroral Substorms?, AGU Advances, 2, e00275, doi:10.1029/2020AV00027510.1002/essoar.10502511.2. | ADS Cites BibTeX DOI |
237) | Giles, Rohini S., et al. (2021), Detection of a Bolide in Jupiter’s Atmosphere With Juno UVS, Geophysics Research Letters, 48, e91797, doi:10.1029/2020GL091797. | ADS Cites BibTeX DOI |
236) | Hue, V., et al. (2021), Detection and Characterization of Circular Expanding UV Emissions Observed in Jupiter’s Polar Auroral Regions, Journal of Geophysical Research (Space Physics), 126, e28971, doi:10.1029/2020JA028971. | ADS Cites BibTeX DOI |
235) | Jorgensen, J.L., et al. (2021), Distribution of Interplanetary Dust Detected by the Juno Spacecraft and Its Contribution to the Zodiacal Light, Journal of Geophysical Research (Planets), 126, e06509, doi:10.1029/2020JE006509. | ADS Cites BibTeX DOI |
234) | Mishra, Ishan, et al. (2021), Bayesian analysis of Juno/JIRAM’s NIR observations of Europa, Icarus, 357, 114215, doi:10.1016/j.icarus.2020.114215. | ADS Cites BibTeX DOI |
233) | Pan, Dong-Xiao, et al. (2021), Ultralow Frequency Waves in Driving Jovian Aurorae Revealed by Observations From HST and Juno, Geophysics Research Letters, 48, e91579, doi:10.1029/2020GL091579. | ADS Cites BibTeX DOI |
232) | Park, Ryan S., et al. (2021), The JPL Planetary and Lunar Ephemerides DE440 and DE441, Astronomical Journal, 161, 105, doi:10.3847/1538-3881/abd414. | ADS Cites BibTeX DOI |
231) | Aglyamov, Yury S., et al. (2021), Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter, Journal of Geophysical Research (Planets), 126, e06504, doi:10.1029/2020JE006504. | ADS Cites BibTeX DOI |
230) | Haewsantati, K., et al. (2021), Morphology of Jupiter’s Polar Auroral Bright Spot Emissions via Juno UVS Observations, Journal of Geophysical Research (Space Physics), 126, e28586, doi:10.1029/2020JA02858610.1002/essoar.10504085.1. | ADS Cites BibTeX DOI |
229) | Menietti, J.D., et al. (2021), Low Latitude Whistler Mode and Higher Latitude Z Mode Emission at Jupiter Observed by Juno, Journal of Geophysical Research (Space Physics), 126, e28742, doi:10.1029/2020JA028742. | ADS Cites BibTeX DOI |
228) | Phipps, Phillip and Bagenal, Fran (2021), Centrifugal Equator in Jupiter’s Plasma Sheet, Journal of Geophysical Research (Space Physics), 126, e28713, doi:10.1029/2020JA028713. | ADS Cites BibTeX DOI |
227) | Sarkango, Yash, et al. (2021), Juno Observations of Ion-Inertial Scale Flux Ropes in the Jovian Magnetotail, Geophysics Research Letters, 48, e89721, doi:10.1029/2020GL089721. | ADS Cites BibTeX DOI |
226) | Szalay, J.R., et al. (2021), Proton Outflow Associated With Jupiter’s Auroral Processes, Geophysics Research Letters, 48, e91627, doi:10.1029/2020GL091627. | ADS Cites BibTeX DOI |
225) | Clark, G., et al. (2020), Energetic Proton Acceleration Associated With Io’s Footprint Tail, Geophysics Research Letters, 47, e90839, doi:10.1029/2020GL09083910.1002/essoar.10504411.1. | ADS Cites BibTeX DOI |
224) | Herceg, M., et al. (2020), Thermoelastic Response of the Juno Spacecraft’s Solar Array/Magnetometer Boom and Its Applicability to Improved Magnetic Field Investigation, Earth and Space Science, 7, 01338, doi:10.1029/2020EA001338. | ADS Cites BibTeX DOI |
223) | Mauk, B.H., et al. (2020), Energetic Neutral Atoms From Jupiter’s Polar Regions, Journal of Geophysical Research (Space Physics), 125, e28697, doi:10.1029/2020JA028697. | ADS Cites BibTeX DOI |
222) | Mura, A., et al. (2020), Infrared Observations of Ganymede From the Jovian InfraRed Auroral Mapper on Juno, Journal of Geophysical Research (Planets), 125, e06508, doi:10.1029/2020JE006508. | ADS Cites BibTeX DOI |
221) | Pollock, C.J., et al. (2020), A Persistent Depletion of Plasma Ions Within Jupiter’s Auroral Polar Caps, Geophysics Research Letters, 47, e90764, doi:10.1029/2020GL090764. | ADS Cites BibTeX DOI |
220) | Bonfond, Bertrand and Yao, Zhonghua and Grodent, Denis (2020), Six Pieces of Evidence Against the Corotation Enforcement Theory to Explain the Main Aurora at Jupiter, Journal of Geophysical Research (Space Physics), 125, e28152, doi:10.1029/2020JA028152. | ADS Cites BibTeX DOI |
219) | Giles, Rohini S., et al. (2020), Possible Transient Luminous Events Observed in Jupiter’s Upper Atmosphere, Journal of Geophysical Research (Planets), 125, e06659, doi:10.1029/2020JE006659. | ADS Cites BibTeX DOI |
218) | Oyafuso, Fabiano, et al. (2020), Angular Dependence and Spatial Distribution of Jupiter’s Centimeter-Wave Thermal Emission From Juno’s Microwave Radiometer, Earth and Space Science, 7, e01254, doi:10.1029/2020EA001254. | ADS Cites BibTeX DOI |
217) | Parisi, Marzia, et al. (2020), Resolving the Latitudinal Short-Scale Gravity Field of Jupiter Using Slepian Functions, Journal of Geophysical Research (Planets), 125, e06416, doi:10.1029/2020JE006416. | ADS Cites BibTeX DOI |
216) | Sulaiman, A.H., et al. (2020), Wave-Particle Interactions Associated With Io’s Auroral Footprint: Evidence of Alfvén, Ion Cyclotron, and Whistler Modes, Geophysics Research Letters, 47, e88432, doi:10.1029/2020GL088432. | ADS Cites BibTeX DOI |
215) | Tosi, F., et al. (2020), Mapping Io’s Surface Composition With Juno/JIRAM, Journal of Geophysical Research (Planets), 125, e06522, doi:10.1029/2020JE006522. | ADS Cites BibTeX DOI |
214) | Connerney, J.E.P., et al. (2020), A Jovian Magnetodisc Model for the Juno Era, Journal of Geophysical Research (Space Physics), 125, e28138, doi:10.1029/2020JA028138. | ADS Cites BibTeX DOI |
213) | Louis, C.K., et al. (2020), Ganymede-Induced Decametric Radio Emission: In Situ Observations and Measurements by Juno, Geophysics Research Letters, 47, e90021, doi:10.1029/2020GL09002110.1002/essoar.10503834.1. | ADS Cites BibTeX DOI |
212) | Allegrini, F., et al. (2020), First Report of Electron Measurements During a Europa Footprint Tail Crossing by Juno, Geophysics Research Letters, 47, e89732, doi:10.1029/2020GL089732. | ADS Cites BibTeX DOI |
211) | Clark, G., et al. (2020), Heavy Ion Charge States in Jupiter’s Polar Magnetosphere Inferred From Auroral Megavolt Electric Potentials, Journal of Geophysical Research (Space Physics), 125, e28052, doi:10.1029/2020JA028052. | ADS Cites BibTeX DOI |
210) | Collier, Michael R., et al. (2020), A K-Means Clustering Analysis of the Jovian and Terrestrial Magnetopauses: A Technique to Classify Global Magnetospheric Behavior, Journal of Geophysical Research (Planets), 125, e06366, doi:10.1029/2019JE006366. | ADS Cites BibTeX DOI |
209) | Hodges, Amorée., et al. (2020), Observations and Electron Density Retrievals of Jupiter’s Discrete Auroral Arcs Using the Juno Microwave Radiometer, Journal of Geophysical Research (Planets), 125, e06293, doi:10.1029/2019JE006293. | ADS Cites BibTeX DOI |
208) | Szalay, J.R., et al. (2020), A New Framework to Explain Changes in Io’s Footprint Tail Electron Fluxes, Geophysics Research Letters, 47, e89267, doi:10.1029/2020GL089267. | ADS Cites BibTeX DOI |
207) | Zhang, Zhimeng, et al. (2020), Residual Study: Testing Jupiter Atmosphere Models Against Juno MWR Observations, Earth and Space Science, 7, e01229, doi:10.1029/2020EA001229. | ADS Cites BibTeX DOI |
206) | Becker, Heidi N., et al. (2020), Small lightning flashes from shallow electrical storms on Jupiter, Nature, 584, 55-58, doi:10.1038/s41586-020-2532-1. | ADS Cites BibTeX DOI |
205) | Buccino, Dustin R., et al. (2020), Updated Equipotential Shapes of Jupiter and Saturn Using Juno and Cassini Grand Finale Gravity Science Measurements, Journal of Geophysical Research (Planets), 125, e06354, doi:10.1029/2019JE006354. | ADS Cites BibTeX DOI |
204) | Duer, Keren and Galanti, Eli and Kaspi, Yohai (2020), The Range of Jupiter’s Flow Structures that Fit the Juno Asymmetric Gravity Measurements, Journal of Geophysical Research (Planets), 125, e06292, doi:10.1029/2019JE006292. | ADS Cites BibTeX DOI |
203) | Fletcher, L.N., et al. (2020), Jupiter’s Equatorial Plumes and Hot Spots: Spectral Mapping from Gemini/TEXES and Juno/MWR, Journal of Geophysical Research (Planets), 125, e06399, doi:10.1029/2020JE006399. | ADS Cites BibTeX DOI |
202) | Guillot, Tristan, et al. (2020), Storms and the Depletion of Ammonia in Jupiter: II. Explaining the Juno Observations, Journal of Geophysical Research (Planets), 125, e06404, doi:10.1029/2020JE00640410.1002/essoar.10502179.1. | ADS Cites BibTeX DOI |
201) | Guillot, Tristan, et al. (2020), Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of “Mushballs”, Journal of Geophysical Research (Planets), 125, e06403, doi:10.1029/2020JE00640310.1002/essoar.10502154.1. | ADS Cites BibTeX DOI |
200) | Gérard, J. -C., et al. (2020), Spatial Distribution of the Pedersen Conductance in the Jovian Aurora From Juno-UVS Spectral Images, Journal of Geophysical Research (Space Physics), 125, e28142, doi:10.1029/2020JA028142. | ADS Cites BibTeX DOI |
199) | Imai, Masafumi, et al. (2020), High-Spatiotemporal Resolution Observations of Jupiter Lightning-Induced Radio Pulses Associated With Sferics and Thunderstorms, Geophysics Research Letters, 47, e88397, doi:10.1029/2020GL088397. | ADS Cites BibTeX DOI |
198) | Li, W., et al. (2020), Global Distribution of Whistler Mode Waves in Jovian Inner Magnetosphere, Geophysics Research Letters, 47, e88198, doi:10.1029/2020GL088198. | ADS Cites BibTeX DOI |
197) | Ma, Q., et al. (2020), Energetic Electron Scattering due to Whistler Mode Chorus Waves Using Realistic Magnetic Field and Density Models in Jupiter’s Magnetosphere, Journal of Geophysical Research (Space Physics), 125, e27968, doi:10.1029/2020JA027968. | ADS Cites BibTeX DOI |
196) | Nichols, J.D., et al. (2020), An Enhancement of Jupiter’s Main Auroral Emission and Magnetospheric Currents, Journal of Geophysical Research (Space Physics), 125, e27904, doi:10.1029/2020JA027904. | ADS Cites BibTeX DOI |
195) | Phipps, Phillip H., et al. (2020), Where Is the Io Plasma Torus? A Comparison of Observations by Juno Radio Occultations to Predictions From Jovian Magnetic Field Models, Journal of Geophysical Research (Space Physics), 125, e27633, doi:10.1029/2019JA027633. | ADS Cites BibTeX DOI |
194) | Ranquist, D.A. and Bagenal, F. and Wilson, R.J. (2020), Polar Flattening of Jupiter’s Magnetosphere, Geophysics Research Letters, 47, e89818, doi:10.1029/2020GL089818. | ADS Cites BibTeX DOI |
193) | Visscher, Channon (2020), Mapping Jupiter’s Mischief, Journal of Geophysical Research (Planets), 125, e06526, doi:10.1029/2020JE006526. | ADS Cites BibTeX DOI |
192) | Yao, Z.H., et al. (2020), Reconnection- and Dipolarization-Driven Auroral Dawn Storms and Injections, Journal of Geophysical Research (Space Physics), 125, e27663, doi:10.1029/2019JA02766310.1002/essoar.10503657.1. | ADS Cites BibTeX DOI |
191) | Zhang, X. -J., et al. (2020), Plasma Sheet Boundary Layer in Jupiter’s Magnetodisk as Observed by Juno, Journal of Geophysical Research (Space Physics), 125, e27957, doi:10.1029/2020JA027957. | ADS Cites BibTeX DOI |
190) | Kotsiaros, S. and Connerney, J.E.P. and Martos, Y.M. (2020), Analysis of Eddy Current Generation on the Juno Spacecraft in Jupiter’s Magnetosphere, Earth and Space Science, 7, e01061, doi:10.1029/2019EA001061. | ADS Cites BibTeX DOI |
189) | Martos, Yasmina M., et al. (2020), Juno Reveals New Insights Into Io-Related Decameter Radio Emissions, Journal of Geophysical Research (Planets), 125, e06415, doi:10.1029/2020JE006415. | ADS Cites BibTeX DOI |
188) | Moriconi, M.L., et al. (2020), Turbulence Power Spectra in Regions Surrounding Jupiter’s South Polar Cyclones From Juno/JIRAM, Journal of Geophysical Research (Planets), 125, e06096, doi:10.1029/2019JE006096. | ADS Cites BibTeX DOI |
187) | Orton, Glenn S., et al. (2020), A Survey of Small-Scale Waves and Wave-Like Phenomena in Jupiter’s Atmosphere Detected by JunoCam, Journal of Geophysical Research (Planets), 125, e06369, doi:10.1029/2019JE00636910.1002/essoar.10502999.1. | ADS Cites BibTeX DOI |
186) | Adriani, A., et al. (2020), Two-Year Observations of the Jupiter Polar Regions by JIRAM on Board Juno, Journal of Geophysical Research (Planets), 125, e06098, doi:10.1029/2019JE006098. | ADS Cites BibTeX DOI |
185) | Elliott, S.S., et al. (2020), The Generation of Upward-Propagating Whistler Mode Waves by Electron Beams in the Jovian Polar Regions, Journal of Geophysical Research (Space Physics), 125, e27868, doi:10.1029/2020JA027868. | ADS Cites BibTeX DOI |
184) | Kaspi, Yohai, et al. (2020), Comparison of the Deep Atmospheric Dynamics of Jupiter and Saturn in Light of the Juno and Cassini Gravity Measurements, Space Science Reviews, 216, 84, doi:10.1007/s11214-020-00705-7. | ADS Cites BibTeX DOI |
183) | Valek, P.W., et al. (2020), Juno In Situ Observations Above the Jovian Equatorial Ionosphere, Geophysics Research Letters, 47, e87623, doi:10.1029/2020GL087623. | ADS Cites BibTeX DOI |
182) | Ye, S. -Y., et al. (2020), Juno Waves Detection of Dust Impacts Near Jupiter, Journal of Geophysical Research (Planets), 125, e06367, doi:10.1029/2019JE006367. | ADS Cites BibTeX DOI |
181) | Artemyev, A.V., et al. (2020), Juno Observations of Heavy Ion Energization During Transient Dipolarizations in Jupiter Magnetotail, Journal of Geophysical Research (Space Physics), 125, e27933, doi:10.1029/2020JA027933. | ADS Cites BibTeX DOI |
180) | Bagenal, Fran and Dols, Vincent (2020), The Space Environment of Io and Europa, Journal of Geophysical Research (Space Physics), 125, e27485, doi:10.1029/2019JA027485. | ADS Cites BibTeX DOI |
179) | Kulowski, Laura and Cao, Hao and Bloxham, Jeremy (2020), Contributions to Jupiter’s Gravity Field From Dynamics in the Dynamo Region, Journal of Geophysical Research (Planets), 125, e06165, doi:10.1029/2019JE006165. | ADS Cites BibTeX DOI |
178) | Mauk, B.H., et al. (2020), Juno Energetic Neutral Atom (ENA) Remote Measurements of Magnetospheric Injection Dynamics in Jupiter’s Io Torus Regions, Journal of Geophysical Research (Space Physics), 125, e27964, doi:10.1029/2020JA027964. | ADS Cites BibTeX DOI |
177) | Mura, A., et al. (2020), Infrared observations of Io from Juno, Icarus, 341, 113607, doi:10.1016/j.icarus.2019.113607. | ADS Cites BibTeX DOI |
176) | Wibisono, A.D., et al. (2020), Temporal and Spectral Studies by XMM-Newton of Jupiter’s X-ray Auroras During a Compression Event, Journal of Geophysical Research (Space Physics), 125, e27676, doi:10.1029/2019JA027676. | ADS Cites BibTeX DOI |
175) | Allegrini, F., et al. (2020), Energy Flux and Characteristic Energy of Electrons Over Jupiter’s Main Auroral Emission, Journal of Geophysical Research (Space Physics), 125, e27693, doi:10.1029/2019JA027693. | ADS Cites BibTeX DOI |
174) | Grassi, D., et al. (2020), On the Spatial Distribution of Minor Species in Jupiter’s Troposphere as Inferred From Juno JIRAM Data, Journal of Geophysical Research (Planets), 125, e06206, doi:10.1029/2019JE006206. | ADS Cites BibTeX DOI |
173) | Kim, Thomas K., et al. (2020), Survey of Ion Properties in Jupiter’s Plasma Sheet: Juno JADE-I Observations, Journal of Geophysical Research (Space Physics), 125, e27696, doi:10.1029/2019JA027696. | ADS Cites BibTeX DOI |
172) | Nerney, Edward G. and Bagenal, Fran (2020), Combining UV Spectra and Physical Chemistry to Constrain the Hot Electron Fraction in the Io Plasma Torus, Journal of Geophysical Research (Space Physics), 125, e27458, doi:10.1029/2019JA027458. | ADS Cites BibTeX DOI |
171) | Weigt, D.M., et al. (2020), Chandra Observations of Jupiter’s X-ray Auroral Emission During Juno Apojove 2017, Journal of Geophysical Research (Planets), 125, e06262, doi:10.1029/2019JE006262. | ADS Cites BibTeX DOI |
170) | Mauk, B.H., et al. (2020), Energetic Particles and Acceleration Regions Over Jupiter’s Polar Cap and Main Aurora: A Broad Overview, Journal of Geophysical Research (Space Physics), 125, e27699, doi:10.1029/2019JA027699. | ADS Cites BibTeX DOI |
169) | Vogt, Marissa F., et al. (2020), Magnetotail Reconnection at Jupiter: A Survey of Juno Magnetic Field Observations, Journal of Geophysical Research (Space Physics), 125, e27486, doi:10.1029/2019JA027486. | ADS Cites BibTeX DOI |
168) | Durante, D., et al. (2020), Jupiter’s Gravity Field Halfway Through the Juno Mission, Geophysics Research Letters, 47, e86572, doi:10.1029/2019GL086572. | ADS Cites BibTeX DOI |
167) | Houston, S.J., et al. (2020), Jovian Auroral Ion Precipitation: X-Ray Production From Oxygen and Sulfur Precipitation, Journal of Geophysical Research (Space Physics), 125, e27007, doi:10.1029/2019JA027007. | ADS Cites BibTeX DOI |
166) | Kim, Thomas K., et al. (2020), Method to Derive Ion Properties From Juno JADE Including Abundance Estimates for O+ and S2+, Journal of Geophysical Research (Space Physics), 125, e26169, doi:10.1029/2018JA026169. | ADS Cites BibTeX DOI |
165) | Li, Cheng, et al. (2020), The water abundance in Jupiter’s equatorial zone, Nature Astronomy, 4, 609-616, doi:10.1038/s41550-020-1009-3. | ADS Cites BibTeX DOI |
164) | Parisi, Marzia, et al. (2020), A mascon approach to estimating the depth of Jupiter’s Great Red Spot with Juno gravity measurements, Planetary Space Science, 181, 104781, doi:10.1016/j.pss.2019.104781. | ADS Cites BibTeX DOI |
163) | Szalay, J.R., et al. (2020), Alfvénic Acceleration Sustains Ganymede’s Footprint Tail Aurora, Geophysics Research Letters, 47, e86527, doi:10.1029/2019GL086527. | ADS Cites BibTeX DOI |
162) | Iñurrigarro, P., et al. (2020), Observations and numerical modelling of a convective disturbance in a large-scale cyclone in Jupiter’s South Temperate Belt, Icarus, 336, 113475, doi:10.1016/j.icarus.2019.113475. | ADS Cites BibTeX DOI |
161) | Szalay, J.R., et al. (2020), Proton Acceleration by Io’s Alfvénic Interaction, Journal of Geophysical Research (Space Physics), 125, e27314, doi:10.1029/2019JA027314. | ADS Cites BibTeX DOI |
160) | Tabataba-Vakili, F., et al. (2020), Long-term tracking of circumpolar cyclones on Jupiter from polar observations with JunoCam, Icarus, 335, 113405, doi:10.1016/j.icarus.2019.113405. | ADS Cites BibTeX DOI |
159) | Durante, D. (2019), Effect of Juno’s Solar Panel Bending on Gravity Measurements, Journal of Guidance Control Dynamics, 42, 2694-2699, doi:10.2514/1.G004503. | ADS Cites BibTeX DOI |
158) | Kita, H., et al. (2019), Jovian UV Aurora’s Response to the Solar Wind: Hisaki EXCEED and Juno Observations, Journal of Geophysical Research (Space Physics), 124, 10, doi:10.1029/2019JA026997. | ADS Cites BibTeX DOI |
157) | Paranicas, C., et al. (2019), Io’s Effect on Energetic Charged Particles as Seen in Juno Data, Geophysics Research Letters, 46, 13, doi:10.1029/2019GL085393. | ADS Cites BibTeX DOI |
156) | Gérard, J. -C., et al. (2019), Contemporaneous Observations of Jovian Energetic Auroral Electrons and Ultraviolet Emissions by the Juno Spacecraft, Journal of Geophysical Research (Space Physics), 124, 8298-8317, doi:10.1029/2019JA026862. | ADS Cites BibTeX DOI |
155) | Louis, C.K., et al. (2019), Jovian Auroral Radio Sources Detected In Situ by Juno/Waves: Comparisons With Model Auroral Ovals and Simultaneous HST FUV Images, Geophysics Research Letters, 46, 11, doi:10.1029/2019GL084799. | ADS Cites BibTeX DOI |
154) | Ranquist, D.A., et al. (2019), Survey of Jupiter’s Dawn Magnetosheath Using Juno, Journal of Geophysical Research (Space Physics), 124, 9106-9123, doi:10.1029/2019JA027382. | ADS Cites BibTeX DOI |
153) | Serra, Daniele, et al. (2019), A solution of Jupiter’s gravitational field from Juno data with the ORBIT14 software, Monthly Notices of the RAS, 490, 766-772, doi:10.1093/mnras/stz2657. | ADS Cites BibTeX DOI |
152) | Swithenbank-Harris, B.G. and Nichols, J.D. and Bunce, E.J. (2019), Jupiter’s Dark Polar Region as Observed by the Hubble Space Telescope During the Juno Approach Phase, Journal of Geophysical Research (Space Physics), 124, 9094-9105, doi:10.1029/2019JA027306. | ADS Cites BibTeX DOI |
151) | Yao, Z.H., et al. (2019), On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux: Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki, Geophysics Research Letters, 46, 11, doi:10.1029/2019GL084201. | ADS Cites BibTeX DOI |
150) | Notaro, Virginia and Durante, Daniele and Iess, Luciano (2019), On the determination of Jupiter’s satellite-dependent Love numbers from Juno gravity data, Planetary Space Science, 175, 34-40, doi:10.1016/j.pss.2019.06.001. | ADS Cites BibTeX DOI |
149) | Westlake, J.H., et al. (2019), High-Energy (>10 MeV) Oxygen and Sulfur Ions Observed at Jupiter From Pulse Width Measurements of the JEDI Sensors, Geophysics Research Letters, 46, 10, doi:10.1029/2019GL083842. | ADS Cites BibTeX DOI |
148) | Migliorini, A., et al. (2019), H3+ characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM, Icarus, 329, 132-139, doi:10.1016/j.icarus.2019.04.003. | ADS Cites BibTeX DOI |
147) | Filacchione, Gianrico, et al. (2019), Serendipitous infrared observations of Europa by Juno/JIRAM, Icarus, 328, 1-13, doi:10.1016/j.icarus.2019.03.022. | ADS Cites BibTeX DOI |
146) | Haggerty, D.K., et al. (2019), Jovian Injections Observed at High Latitude, Geophysics Research Letters, 46, 9397-9404, doi:10.1029/2019GL083442. | ADS Cites BibTeX DOI |
145) | Valek, P.W., et al. (2019), Jovian High-Latitude Ionospheric Ions: Juno In Situ Observations, Geophysics Research Letters, 46, 8663-8670, doi:10.1029/2019GL084146. | ADS Cites BibTeX DOI |
144) | Duer, Keren and Galanti, Eli and Kaspi, Yohai (2019), Analysis of Jupiter’s Deep Jets Combining Juno Gravity and Time-varying Magnetic Field Measurements, Astrophysical Journal, 879, L22, doi:10.3847/2041-8213/ab288e. | ADS Cites BibTeX DOI |
143) | Gershman, Daniel J., et al. (2019), Alfvénic Fluctuations Associated With Jupiter’s Auroral Emissions, Geophysics Research Letters, 46, 7157-7165, doi:10.1029/2019GL082951. | ADS Cites BibTeX DOI |
142) | Hue, V., et al. (2019), Juno-UVS Observation of the Io Footprint During Solar Eclipse, Journal of Geophysical Research (Space Physics), 124, 5184-5199, doi:10.1029/2018JA026431. | ADS Cites BibTeX DOI |
141) | Kotsiaros, Stavros, et al. (2019), Birkeland currents in Jupiter’s magnetosphere observed by the polar-orbiting Juno spacecraft, Nature Astronomy, 3, 904-909, doi:10.1038/s41550-019-0819-7. | ADS Cites BibTeX DOI |
140) | Mauk, B.H., et al. (2019), Investigation of Mass-/Charge-Dependent Escape of Energetic Ions Across the Magnetopauses of Earth and Jupiter, Journal of Geophysical Research (Space Physics), 124, 5539-5567, doi:10.1029/2019JA026626. | ADS Cites BibTeX DOI |
139) | Phipps, Phillip H., et al. (2019), Variations in the Density Distribution of the Io Plasma Torus as Seen by Radio Occultations on Juno Perijoves 3, 6, and 8, Journal of Geophysical Research (Space Physics), 124, 5200-5221, doi:10.1029/2018JA026297. | ADS Cites BibTeX DOI |
138) | Imai, Masafumi, et al. (2019), Evidence for low density holes in Jupiter’s ionosphere, Nature Communications, 10, 2751, doi:10.1038/s41467-019-10708-w. | ADS Cites BibTeX DOI |
137) | Moore, K.M., et al. (2019), Time variation of Jupiter’s internal magnetic field consistent with zonal wind advection, Nature Astronomy, 3, 730-735, doi:10.1038/s41550-019-0772-5. | ADS Cites BibTeX DOI |
136) | Galanti, Eli, et al. (2019), Determining the Depth of Jupiter’s Great Red Spot with Juno: A Slepian Approach, Astrophysical Journal, 874, L24, doi:10.3847/2041-8213/ab1086. | ADS Cites BibTeX DOI |
135) | Pensionerov, I.A., et al. (2019), Model of Jupiter’s Current Sheet With a Piecewise Current Density, Journal of Geophysical Research (Space Physics), 124, 1843-1854, doi:10.1029/2018JA026321. | ADS Cites BibTeX DOI |
134) | Hue, Vincent, et al. (2019), In-flight Characterization and Calibration of the Juno-ultraviolet Spectrograph (Juno-UVS), Astronomical Journal, 157, 90, doi:10.3847/1538-3881/aafb36. | ADS Cites BibTeX DOI |
133) | Li, Cheng and Chen, Xi (2019), Simulating Nonhydrostatic Atmospheres on Planets (SNAP): Formulation, Validation, and Application to the Jovian Atmosphere, Astrophysical Journal, 240, 37, doi:10.3847/1538-4365/aafdaa. | ADS Cites BibTeX DOI |
132) | Ebert, R.W., et al. (2019), Comparing Electron Energetics and UV Brightness in Jupiter’s Northern Polar Region During Juno Perijove 5, Geophysics Research Letters, 46, 19-27, doi:10.1029/2018GL081129. | ADS Cites BibTeX DOI |
131) | Imai, Masafumi, et al. (2019), Probing Jovian Broadband Kilometric Radio Sources Tied to the Ultraviolet Main Auroral Oval With Juno, Geophysics Research Letters, 46, 571-579, doi:10.1029/2018GL081227. | ADS Cites BibTeX DOI |
130) | Adriani, A., et al. (2018), Characterization of Mesoscale Waves in the Jupiter NEB by Jupiter InfraRed Auroral Mapper on board Juno, Astronomical Journal, 156, 246, doi:10.3847/1538-3881/aae525. | ADS Cites BibTeX DOI |
129) | Bonfond, B., et al. (2018), Bar Code Events in the Juno-UVS Data: Signature ∼10 MeV Electron Microbursts at Jupiter, Geophysics Research Letters, 45, 12, doi:10.1029/2018GL080490. | ADS Cites BibTeX DOI |
128) | Szalay, J.R., et al. (2018), In Situ Observations Connected to the Io Footprint Tail Aurora, Journal of Geophysical Research (Planets), 123, 3061-3077, doi:10.1029/2018JE005752. | ADS Cites BibTeX DOI |
127) | Sánchez-Lavega, A., et al. (2018), The Rich Dynamics of Jupiter’s Great Red Spot from JunoCam: Juno Images, Astronomical Journal, 156, 162, doi:10.3847/1538-3881/aada81. | ADS Cites BibTeX DOI |
126) | Clark, G., et al. (2018), Precipitating Electron Energy Flux and Characteristic Energies in Jupiter’s Main Auroral Region as Measured by Juno/JEDI, Journal of Geophysical Research (Space Physics), 123, 7554-7567, doi:10.1029/2018JA025639. | ADS Cites BibTeX DOI |
125) | Elliott, S.S., et al. (2018), The Acceleration of Electrons to High Energies Over the Jovian Polar Cap via Whistler Mode Wave-Particle Interactions, Journal of Geophysical Research (Space Physics), 123, 7523-7533, doi:10.1029/2018JA025797. | ADS Cites BibTeX DOI |
124) | Gershman, Daniel J., et al. (2018), Juno Constraints on the Formation of Jupiter’s Magnetospheric Cushion Region, Geophysics Research Letters, 45, 9427-9434, doi:10.1029/2018GL079118. | ADS Cites BibTeX DOI |
123) | Gérard, J. -C., et al. (2018), Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno’s first perijove, Icarus, 312, 145-156, doi:10.1016/j.icarus.2018.04.020. | ADS Cites BibTeX DOI |
122) | Kurth, W.S., et al. (2018), Whistler Mode Waves Associated With Broadband Auroral Electron Precipitation at Jupiter, Geophysics Research Letters, 45, 9372-9379, doi:10.1029/2018GL078566. | ADS Cites BibTeX DOI |
121) | Louarn, P., et al. (2018), Observation of Electron Conics by Juno: Implications for Radio Generation and Acceleration Processes, Geophysics Research Letters, 45, 9408-9416, doi:10.1029/2018GL078973. | ADS Cites BibTeX DOI |
120) | Moore, Kimberly M., et al. (2018), A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field, Nature, 561, 76-78, doi:10.1038/s41586-018-0468-5. | ADS Cites BibTeX DOI |
119) | Fletcher, Leigh N., et al. (2018), Jupiter’s Mesoscale Waves Observed at 5 µm by Ground-based Observations and Juno JIRAM, Astronomical Journal, 156, 67, doi:10.3847/1538-3881/aace02. | ADS Cites BibTeX DOI |
118) | Imai, Masafumi, et al. (2018), Jupiter Lightning-Induced Whistler and Sferic Events With Waves and MWR During Juno Perijoves, Geophysics Research Letters, 45, 7268-7276, doi:10.1029/2018GL078864. | ADS Cites BibTeX DOI |
117) | Mura, A., et al. (2018), Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter, Science, 361, 774-777, doi:10.1126/science.aat1450. | ADS Cites BibTeX DOI |
116) | Phipps, Phillip H., et al. (2018), Distribution of Plasma in the Io Plasma Torus as Seen by Radio Occultation During Juno Perijove 1, Journal of Geophysical Research (Space Physics), 123, 6207-6222, doi:10.1029/2017JA025113. | ADS Cites BibTeX DOI |
115) | Stallard, Tom S., et al. (2018), Identification of Jupiter’s magnetic equator through H3+ ionospheric emission, Nature Astronomy, 2, 773-777, doi:10.1038/s41550-018-0523-z. | ADS Cites BibTeX DOI |
114) | Brown, Shannon, et al. (2018), Prevalent lightning sferics at 600 megahertz near Jupiter’s poles, Nature, 558, 87-90, doi:10.1038/s41586-018-0156-5. | ADS Cites BibTeX DOI |
113) | Grassi, D., et al. (2018), First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAM-Juno Images, Journal of Geophysical Research (Planets), 123, 1511-1524, doi:10.1029/2018JE005555. | ADS Cites BibTeX DOI |
112) | Kolmašová, Ivana, et al. (2018), Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth, Nature Astronomy, 2, 544-548, doi:10.1038/s41550-018-0442-z. | ADS Cites BibTeX DOI |
111) | Grodent, Denis, et al. (2018), Jupiter’s Aurora Observed With HST During Juno Orbits 3 to 7, Journal of Geophysical Research (Space Physics), 123, 3299-3319, doi:10.1002/2017JA025046. | ADS Cites BibTeX DOI |
110) | Simon, Amy A., et al. (2018), Historical and Contemporary Trends in the Size, Drift, and Color of Jupiter’s Great Red Spot, Astronomical Journal, 155, 151, doi:10.3847/1538-3881/aaae01. | ADS Cites BibTeX DOI |
109) | Wilson, R.J., et al. (2018), Solar Wind Properties During Juno’s Approach to Jupiter: Data Analysis and Resulting Plasma Properties Utilizing a 1-D Forward Model, Journal of Geophysical Research (Space Physics), 123, 2772-2786, doi:10.1002/2017JA024860. | ADS Cites BibTeX DOI |
108) | Adriani, A., et al. (2018), Clusters of cyclones encircling Jupiter’s poles, Nature, 555, 216-219, doi:10.1038/nature25491. | ADS Cites BibTeX DOI |
107) | Connerney, J.E.P., et al. (2018), A New Model of Jupiter’s Magnetic Field From Juno’s First Nine Orbits, Geophysics Research Letters, 45, 2590-2596, doi:10.1002/2018GL077312. | ADS Cites BibTeX DOI |
106) | Guillot, T., et al. (2018), A suppression of differential rotation in Jupiter’s deep interior, Nature, 555, 227-230, doi:10.1038/nature25775. | ADS Cites BibTeX DOI |
105) | Iess, L., et al. (2018), Measurement of Jupiter’s asymmetric gravity field, Nature, 555, 220-222, doi:10.1038/nature25776. | ADS Cites BibTeX DOI |
104) | Kaspi, Y., et al. (2018), Jupiter’s atmospheric jet streams extend thousands of kilometres deep, Nature, 555, 223-226, doi:10.1038/nature25793. | ADS Cites BibTeX DOI |
103) | Paranicas, C., et al. (2018), Intervals of Intense Energetic Electron Beams Over Jupiter’s Poles, Journal of Geophysical Research (Space Physics), 123, 1989-1999, doi:10.1002/2017JA025106. | ADS Cites BibTeX DOI |
102) | Elliott, S.S., et al. (2018), Pitch Angle Scattering of Upgoing Electron Beams in Jupiter’s Polar Regions by Whistler Mode Waves, Geophysics Research Letters, 45, 1246-1252, doi:10.1002/2017GL076878. | ADS Cites BibTeX DOI |
101) | Mauk, B.H., et al. (2018), Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter’s Main Aurora, Geophysics Research Letters, 45, 1277-1285, doi:10.1002/2017GL076901. | ADS Cites BibTeX DOI |
100) | Adriani, Alberto, et al. (2017), JIRAM, the Jovian Infrared Auroral Mapper, Space Science Reviews, 213, 393-446, doi:10.1007/s11214-014-0094-y. | ADS Cites BibTeX DOI |
99) | Asmar, Sami W., et al. (2017), The Juno Gravity Science Instrument, Space Science Reviews, 213, 205-218, doi:10.1007/s11214-017-0428-7. | ADS Cites BibTeX DOI |
98) | Bagenal, F., et al. (2017), Magnetospheric Science Objectives of the Juno Mission, Space Science Reviews, 213, 219-287, doi:10.1007/s11214-014-0036-8. | ADS Cites BibTeX DOI |
97) | Becker, H.N., et al. (2017), The Juno Radiation Monitoring (RM) Investigation, Space Science Reviews, 213, 507-545, doi:10.1007/s11214-017-0345-9. | ADS Cites BibTeX DOI |
96) | Bolton, S.J. and Connerney, J.E.P. (2017), Editorial: Topical Collection of the Juno Mission Science Objectives, Instruments, and Implementation, Space Science Reviews, 213, 1-3, doi:10.1007/s11214-017-0430-0. | ADS Cites BibTeX DOI |
95) | Bolton, S.J., et al. (2017), The Juno Mission, Space Science Reviews, 213, 5-37, doi:10.1007/s11214-017-0429-6. | ADS Cites BibTeX DOI |
94) | Cao, Hao and Stevenson, David J. (2017), Zonal flow magnetic field interaction in the semi-conducting region of giant planets, Icarus, 296, 59-72, doi:10.1016/j.icarus.2017.05.015. | ADS Cites BibTeX DOI |
93) | Connerney, J.E.P., et al. (2017), The Juno Magnetic Field Investigation, Space Science Reviews, 213, 39-138, doi:10.1007/s11214-017-0334-z. | ADS Cites BibTeX DOI |
92) | Gladstone, G. Randall, et al. (2017), The Ultraviolet Spectrograph on NASA’s Juno Mission, Space Science Reviews, 213, 447-473, doi:10.1007/s11214-014-0040-z. | ADS Cites BibTeX DOI |
91) | Grassi, D., et al. (2017), Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms, Journal of Quantitiative Spectroscopy and Radiative Transfer, 202, 200-209, doi:10.1016/j.jqsrt.2017.08.008. | ADS Cites BibTeX DOI |
90) | Hansen, C.J., et al. (2017), Junocam: Juno’s Outreach Camera, Space Science Reviews, 213, 475-506, doi:10.1007/s11214-014-0079-x. | ADS Cites BibTeX DOI |
89) | Janssen, M.A., et al. (2017), MWR: Microwave Radiometer for the Juno Mission to Jupiter, Space Science Reviews, 213, 139-185, doi:10.1007/s11214-017-0349-5. | ADS Cites BibTeX DOI |
88) | Kurth, W.S., et al. (2017), The Juno Waves Investigation, Space Science Reviews, 213, 347-392, doi:10.1007/s11214-017-0396-y. | ADS Cites BibTeX DOI |
87) | Mauk, B.H., et al. (2017), The Jupiter Energetic Particle Detector Instrument (JEDI) Investigation for the Juno Mission, Space Science Reviews, 213, 289-346, doi:10.1007/s11214-013-0025-3. | ADS Cites BibTeX DOI |
86) | McComas, D.J., et al. (2017), The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter, Space Science Reviews, 213, 547-643, doi:10.1007/s11214-013-9990-9. | ADS Cites BibTeX DOI |
85) | Steffes, Paul G., et al. (2017), High-Precision Laboratory Measurements Supporting Retrieval of Water Vapor, Gaseous Ammonia, and Aqueous Ammonia Clouds with the Juno Microwave Radiometer (MWR), Space Science Reviews, 213, 187-204, doi:10.1007/s11214-016-0265-0. | ADS Cites BibTeX DOI |
84) | Tollefson, Joshua, et al. (2017), Changes in Jupiter’s Zonal Wind Profile preceding and during the Juno mission, Icarus, 296, 163-178, doi:10.1016/j.icarus.2017.06.007. | ADS Cites BibTeX DOI |
83) | Li, W., et al. (2017), Understanding the Origin of Jupiter’s Diffuse Aurora Using Juno’s First Perijove Observations, Geophysics Research Letters, 44, 10, doi:10.1002/2017GL075545. | ADS Cites BibTeX DOI |
82) | Clark, G., et al. (2017), Energetic particle signatures of magnetic field-aligned potentials over Jupiter’s polar regions, Geophysics Research Letters, 44, 8703-8711, doi:10.1002/2017GL074366. | ADS Cites BibTeX DOI |
81) | Ebert, R.W., et al. (2017), Spatial Distribution and Properties of 0.1-100 keV Electrons in Jupiter’s Polar Auroral Region, Geophysics Research Letters, 44, 9199-9207, doi:10.1002/2017GL075106. | ADS Cites BibTeX DOI |
80) | Louis, C.K., et al. (2017), Io-Jupiter decametric arcs observed by Juno/Waves compared to ExPRES simulations, Geophysics Research Letters, 44, 9225-9232, doi:10.1002/2017GL073036. | ADS Cites BibTeX DOI |
79) | Mauk, B.H., et al. (2017), Discrete and broadband electron acceleration in Jupiter’s powerful aurora, Nature, 549, 66-69, doi:10.1038/nature23648. | ADS Cites BibTeX DOI |
78) | Santos-Costa, D., et al. (2017), First look at Jupiter’s synchrotron emission from Juno’s perspective, Geophysics Research Letters, 44, 8676-8684, doi:10.1002/2017GL072836. | ADS Cites BibTeX DOI |
77) | Bolton, Scott and Levin, Steven and Bagenal, Fran (2017), Juno’s first glimpse of Jupiter’s complexity, Geophysics Research Letters, 44, 7663-7667, doi:10.1002/2017GL074118. | ADS Cites BibTeX DOI |
76) | Gershman, Daniel J., et al. (2017), Juno observations of large-scale compressions of Jupiter’s dawnside magnetopause, Geophysics Research Letters, 44, 7559-7568, doi:10.1002/2017GL073132. | ADS Cites BibTeX DOI |
75) | Gladstone, G.R., et al. (2017), Juno-UVS approach observations of Jupiter’s auroras, Geophysics Research Letters, 44, 7668-7675, doi:10.1002/2017GL073377. | ADS Cites BibTeX DOI |
74) | Ingersoll, Andrew P., et al. (2017), Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer, Geophysics Research Letters, 44, 7676-7685, doi:10.1002/2017GL074277. | ADS Cites BibTeX DOI |
73) | Nichols, J.D., et al. (2017), Response of Jupiter’s auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno, Geophysics Research Letters, 44, 7643-7652, doi:10.1002/2017GL073029. | ADS Cites BibTeX DOI |
72) | Valek, P.W., et al. (2017), Hot flow anomaly observed at Jupiter’s bow shock, Geophysics Research Letters, 44, 8107-8112, doi:10.1002/2017GL073175. | ADS Cites BibTeX DOI |
71) | Allegrini, F., et al. (2017), Electron beams and loss cones in the auroral regions of Jupiter, Geophysics Research Letters, 44, 7131-7139, doi:10.1002/2017GL073180. | ADS Cites BibTeX DOI |
70) | Bolton, Scott J. (2017), Juno celebrates a year at Jupiter, Nature Astronomy, 1, 0178, doi:10.1038/s41550-017-0178. | ADS Cites BibTeX DOI |
69) | Fletcher, L.N., et al. (2017), Jupiter’s North Equatorial Belt expansion and thermal wave activity ahead of Juno’s arrival, Geophysics Research Letters, 44, 7140-7148, doi:10.1002/2017GL073383. | ADS Cites BibTeX DOI |
68) | Galanti, Eli, et al. (2017), Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization, Astronomical Journal, 154, 2, doi:10.3847/1538-3881/aa72db. | ADS Cites BibTeX DOI |
67) | Haggerty, D.K., et al. (2017), Juno/JEDI observations of 0.01 to >10 MeV energetic ions in the Jovian auroral regions: Anticipating a source for polar X-ray emission, Geophysics Research Letters, 44, 6476-6482, doi:10.1002/2017GL072866. | ADS Cites BibTeX DOI |
66) | Imai, Masafumi, et al. (2017), Direction-finding measurements of Jovian low-frequency radio components by Juno near Perijove 1, Geophysics Research Letters, 44, 6508-6516, doi:10.1002/2017GL072850. | ADS Cites BibTeX DOI |
65) | Kurth, W.S., et al. (2017), A new view of Jupiter’s auroral radio spectrum, Geophysics Research Letters, 44, 7114-7121, doi:10.1002/2017GL072889. | ADS Cites BibTeX DOI |
64) | Szalay, J.R., et al. (2017), Plasma measurements in the Jovian polar region with Juno/JADE, Geophysics Research Letters, 44, 7122-7130, doi:10.1002/2017GL072837. | ADS Cites BibTeX DOI |
63) | Gruesbeck, Jacob R., et al. (2017), The interplanetary magnetic field observed by Juno enroute to Jupiter, Geophysics Research Letters, 44, 5936-5942, doi:10.1002/2017GL073137. | ADS Cites BibTeX DOI |
62) | Kaspi, Y., et al. (2017), The effect of differential rotation on Jupiter’s low-degree even gravity moments, Geophysics Research Letters, 44, 5960-5968, doi:10.1002/2017GL073629. | ADS Cites BibTeX DOI |
61) | Kollmann, P., et al. (2017), A heavy ion and proton radiation belt inside of Jupiter’s rings, Geophysics Research Letters, 44, 5259-5268, doi:10.1002/2017GL073730. | ADS Cites BibTeX DOI |
60) | Li, Cheng, et al. (2017), The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data, Geophysics Research Letters, 44, 5317-5325, doi:10.1002/2017GL073159. | ADS Cites BibTeX DOI |
59) | Mura, A., et al. (2017), Infrared observations of Jovian aurora from Juno’s first orbits: Main oval and satellite footprints, Geophysics Research Letters, 44, 5308-5316, doi:10.1002/2017GL072954. | ADS Cites BibTeX DOI |
58) | Sinclair, J.A., et al. (2017), Independent evolution of stratospheric temperatures in Jupiter’s northern and southern auroral regions from 2014 to 2016, Geophysics Research Letters, 44, 5345-5354, doi:10.1002/2017GL073529. | ADS Cites BibTeX DOI |
57) | Adriani, A., et al. (2017), Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora, Geophysics Research Letters, 44, 4633-4640, doi:10.1002/2017GL072905. | ADS Cites BibTeX DOI |
56) | Becker, Heidi N., et al. (2017), Observations of MeV electrons in Jupiter’s innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3, Geophysics Research Letters, 44, 4481-4488, doi:10.1002/2017GL073091. | ADS Cites BibTeX DOI |
55) | Benn, M., et al. (2017), Observations of interplanetary dust by the Juno magnetometer investigation, Geophysics Research Letters, 44, 4701-4708, doi:10.1002/2017GL073186. | ADS Cites BibTeX DOI |
54) | Bolton, S.J., et al. (2017), Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft, Science, 356, 821-825, doi:10.1126/science.aal2108. | ADS Cites BibTeX DOI |
53) | Bonfond, B., et al. (2017), Morphology of the UV aurorae Jupiter during Juno’s first perijove observations, Geophysics Research Letters, 44, 4463-4471, doi:10.1002/2017GL073114. | ADS Cites BibTeX DOI |
52) | Clark, G., et al. (2017), Observation and interpretation of energetic ion conics in Jupiter’s polar magnetosphere, Geophysics Research Letters, 44, 4419-4425, doi:10.1002/2016GL072325. | ADS Cites BibTeX DOI |
51) | Connerney, J.E.P., et al. (2017), Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits, Science, 356, 826-832, doi:10.1126/science.aam5928. | ADS Cites BibTeX DOI |
50) | Cowley, S.W.H., et al. (2017), Magnetosphere-ionosphere coupling at Jupiter: Expectations for Juno Perijove 1 from a steady state axisymmetric physical model, Geophysics Research Letters, 44, 4497-4505, doi:10.1002/2017GL073129. | ADS Cites BibTeX DOI |
49) | Dinelli, B.M., et al. (2017), Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region, Geophysics Research Letters, 44, 4625-4632, doi:10.1002/2017GL072929. | ADS Cites BibTeX DOI |
48) | Ebert, R.W., et al. (2017), Accelerated flows at Jupiter’s magnetopause: Evidence for magnetic reconnection along the dawn flank, Geophysics Research Letters, 44, 4401-4409, doi:10.1002/2016GL072187. | ADS Cites BibTeX DOI |
47) | Folkner, W.M., et al. (2017), Jupiter gravity field estimated from the first two Juno orbits, Geophysics Research Letters, 44, 4694-4700, doi:10.1002/2017GL073140. | ADS Cites BibTeX DOI |
46) | Grassi, D., et al. (2017), Preliminary results on the composition of Jupiter’s troposphere in hot spot regions from the JIRAM/Juno instrument, Geophysics Research Letters, 44, 4615-4624, doi:10.1002/2017GL072841. | ADS Cites BibTeX DOI |
45) | Hospodarsky, G.B., et al. (2017), Jovian bow shock and magnetopause encounters by the Juno spacecraft, Geophysics Research Letters, 44, 4506-4512, doi:10.1002/2017GL073177. | ADS Cites BibTeX DOI |
44) | Hueso, R., et al. (2017), Jupiter cloud morphology and zonal winds from ground-based observations before and during Juno’s first perijove, Geophysics Research Letters, 44, 4669-4678, doi:10.1002/2017GL073444. | ADS Cites BibTeX DOI |
43) | Imai, Masafumi, et al. (2017), Statistical study of latitudinal beaming of Jupiter’s decametric radio emissions using Juno, Geophysics Research Letters, 44, 4584-4590, doi:10.1002/2017GL073148. | ADS Cites BibTeX DOI |
42) | Imai, Masafumi, et al. (2017), Latitudinal beaming of Jovian decametric radio emissions as viewed from Juno and the Nançay Decameter Array, Geophysics Research Letters, 44, 4455-4462, doi:10.1002/2016GL072454. | ADS Cites BibTeX DOI |
41) | Kimura, T., et al. (2017), Transient brightening of Jupiter’s aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft, Geophysics Research Letters, 44, 4523-4531, doi:10.1002/2017GL072912. | ADS Cites BibTeX DOI |
40) | Louarn, P., et al. (2017), Generation of the Jovian hectometric radiation: First lessons from Juno, Geophysics Research Letters, 44, 4439-4446, doi:10.1002/2017GL072923. | ADS Cites BibTeX DOI |
39) | Mauk, B.H., et al. (2017), Juno observations of energetic charged particles over Jupiter’s polar regions: Analysis of monodirectional and bidirectional electron beams, Geophysics Research Letters, 44, 4410-4418, doi:10.1002/2016GL072286. | ADS Cites BibTeX DOI |
38) | Ma, Q., et al. (2017), Electron butterfly distributions at particular magnetic latitudes observed during Juno’s perijove pass, Geophysics Research Letters, 44, 4489-4496, doi:10.1002/2017GL072983. | ADS Cites BibTeX DOI |
37) | McComas, D.J., et al. (2017), Plasma environment at the dawn flank of Jupiter’s magnetosphere: Juno arrives at Jupiter, Geophysics Research Letters, 44, 4432-4438, doi:10.1002/2017GL072831. | ADS Cites BibTeX DOI |
36) | Moore, Kimberly M., et al. (2017), The analysis of initial Juno magnetometer data using a sparse magnetic field representation, Geophysics Research Letters, 44, 4687-4693, doi:10.1002/2017GL073133. | ADS Cites BibTeX DOI |
35) | Moore, L., et al. (2017), Variability of Jupiter’s IR H3+ aurorae during Juno approach, Geophysics Research Letters, 44, 4513-4522, doi:10.1002/2017GL073156. | ADS Cites BibTeX DOI |
34) | Moriconi, M.L., et al. (2017), Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions, Geophysics Research Letters, 44, 4641-4648, doi:10.1002/2017GL073592. | ADS Cites BibTeX DOI |
33) | Moriconi, Maria L. and Noschese, R. and Adriani, A. (2017), Processing tools refinement for the JIRAM arrival to Jupiter, European Physical Journal Plus, 132, 227, doi:10.1140/epjp/i2017-11548-y. | ADS Cites BibTeX DOI |
32) | Orton, G.S., et al. (2017), Multiple-wavelength sensing of Jupiter during the Juno mission’s first perijove passage, Geophysics Research Letters, 44, 4607-4614, doi:10.1002/2017GL073019. | ADS Cites BibTeX DOI |
31) | Orton, Glenn S., et al. (2017), The first close-up images of Jupiter’s polar regions: Results from the Juno mission JunoCam instrument, Geophysics Research Letters, 44, 4599-4606, doi:10.1002/2016GL072443. | ADS Cites BibTeX DOI |
30) | Paranicas, C., et al. (2017), Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3, Geophysics Research Letters, 44, 4426-4431, doi:10.1002/2017GL072600. | ADS Cites BibTeX DOI |
29) | Sindoni, G., et al. (2017), Characterization of the white ovals on Jupiter’s southern hemisphere using the first data by the Juno/JIRAM instrument, Geophysics Research Letters, 44, 4660-4668, doi:10.1002/2017GL072940. | ADS Cites BibTeX DOI |
28) | Sánchez-Lavega, A., et al. (2017), A planetary-scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground-based observations, Geophysics Research Letters, 44, 4679-4686, doi:10.1002/2017GL073421. | ADS Cites BibTeX DOI |
27) | Tetrick, S.S., et al. (2017), Plasma waves in Jupiter’s high-latitude regions: Observations from the Juno spacecraft, Geophysics Research Letters, 44, 4447-4454, doi:10.1002/2017GL073073. | ADS Cites BibTeX DOI |
26) | Wahl, S.M., et al. (2017), Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core, Geophysics Research Letters, 44, 4649-4659, doi:10.1002/2017GL073160. | ADS Cites BibTeX DOI |
25) | Zhang, X. -J., et al. (2017), Searching for low-altitude magnetic field anomalies by using observations of the energetic particle loss cone on JUNO, Geophysics Research Letters, 44, 4472-4480, doi:10.1002/2017GL072902. | ADS Cites BibTeX DOI |
24) | Cao, Hao and Stevenson, David J. (2017), Gravity and zonal flows of giant planets: From the Euler equation to the thermal wind equation, Journal of Geophysical Research (Planets), 122, 686-700, doi:10.1002/2017JE005272. | ADS Cites BibTeX DOI |
23) | Galanti, Eli and Kaspi, Yohai (2017), Decoupling Jupiter’s deep and atmospheric flows using the upcoming Juno gravity measurements and a dynamical inverse model, Icarus, 286, 46-55, doi:10.1016/j.icarus.2017.01.004. | ADS Cites BibTeX DOI |
22) | Imai, M., et al. (2017), Analysis of Jovian low-frequency radio emissions based on stereoscopic observations with Juno and Earth-based radio telescopes, Planetary Radio Emissions VIII, 13-23, doi:10.1553/PRE8s13. | ADS Cites BibTeX DOI |
21) | Kurth, W.S., et al. (2017), First observations near Jupiter by the Juno Waves investigation, Planetary Radio Emissions VIII, 1-12, doi:10.1553/PRE8s1. | ADS Cites BibTeX DOI |
20) | Louis, C., et al. (2017), Simulating Jupiter-satellite decametric emissions with ExPRES: A parametric study, Planetary Radio Emissions VIII, 59-72, doi:10.1553/PRE8s59. | ADS Cites BibTeX DOI |
19) | Bellotti, Amadeo and Steffes, Paul G. and Chinsomboom, Garrett (2016), Laboratory measurements of the 5-20 cm wavelength opacity of ammonia, water vapor, and methane under simulated conditions for the deep jovian atmosphere, Icarus, 280, 255-267, doi:10.1016/j.icarus.2016.07.013. | ADS Cites BibTeX DOI |
18) | Hospodarsky, George B. (2016), Spaced-based search coil magnetometers, Journal of Geophysical Research (Space Physics), 121, 12, doi:10.1002/2016JA022565. | ADS Cites BibTeX DOI |
17) | Sampl, Manfred, et al. (2016), Juno model rheometry and simulation, Radio Science, 51, 1627-1635, doi:10.1002/2016RS005954. | ADS Cites BibTeX DOI |
16) | Kaspi, Y., et al. (2016), The gravitational signature of internal flows in giant planets: Comparing the thermal wind approach with barotropic potential-surface methods, Icarus, 276, 170-181, doi:10.1016/j.icarus.2016.04.001. | ADS Cites BibTeX DOI |
15) | Adriani, A., et al. (2016), Juno’s Earth flyby: the Jovian infrared Auroral Mapper preliminary results, Astrophysics and Space Science, 361, 272, doi:10.1007/s10509-016-2842-9. | ADS Cites BibTeX DOI |
14) | Clark, G., et al. (2016), Modeling the response of a top hat electrostatic analyzer in an external magnetic field: Experimental validation with the Juno JADE-E sensor, Journal of Geophysical Research (Space Physics), 121, 5121-5136, doi:10.1002/2016JA022583. | ADS Cites BibTeX DOI |
13) | Galanti, Eli and Kaspi, Yohai (2016), An Adjoint-based Method for the Inversion of the Juno and Cassini Gravity Measurements into Wind Fields, Astrophysical Journal, 820, 91, doi:10.3847/0004-637X/820/2/91. | ADS Cites BibTeX DOI |
12) | Parisi, M., et al. (2016), Probing the depth of Jupiter’s Great Red Spot with the Juno gravity experiment, Icarus, 267, 232-242, doi:10.1016/j.icarus.2015.12.011. | ADS Cites BibTeX DOI |
11) | Pedersen, David Arge Klevang, et al. (2016), MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging, Acta Astronautica, 118, 308-315, doi:10.1016/j.actaastro.2015.11.001. | ADS Cites BibTeX DOI |
10) | Devaraj, Kiruthika and Steffes, Paul G. and Duong, Danny (2014), The centimeter-wavelength opacity of ammonia under deep jovian conditions, Icarus, 241, 165-179, doi:10.1016/j.icarus.2014.06.017. | ADS Cites BibTeX DOI |
9) | Duong, Danny and Steffes, Paul G. and Noorizadeh, Sahand (2014), The microwave properties of the jovian clouds: A new model for the complex dielectric constant of aqueous ammonia, Icarus, 229, 121-130, doi:10.1016/j.icarus.2013.11.004. | ADS Cites BibTeX DOI |
8) | Bernard, Douglas E., et al. (2013), Europa planetary protection for Juno Jupiter Orbiter, Advances in Space Research, 52, 547-568, doi:10.1016/j.asr.2013.03.015. | ADS Cites BibTeX DOI |
7) | Karpowicz, Bryan M. and Steffes, Paul G. (2013), Investigating the H2-He-H2O-CH4 equation of state in the deep troposphere of Jupiter, Icarus, 223, 277-297, doi:10.1016/j.icarus.2012.11.026. | ADS Cites BibTeX DOI |
6) | Kaspi, Yohai (2013), Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics, Geophysics Research Letters, 40, 676-680, doi:10.1029/2012GL053873. | ADS Cites BibTeX DOI |
5) | Karpowicz, Bryan M. and Steffes, Paul G. (2011), In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated jovian conditions, Icarus, 212, 210-223, doi:10.1016/j.icarus.2010.11.035. | ADS Cites BibTeX DOI |
4) | Grassi, D., et al. (2010), Jupiter’s hot spots: Quantitative assessment of the retrieval capabilities of future IR spectro-imagers, Planetary Space Science, 58, 1265-1278, doi:10.1016/j.pss.2010.05.003. | ADS Cites BibTeX DOI |
3) | Hanley, Thomas R. and Steffes, Paul G. and Karpowicz, Bryan M. (2009), A new model of the hydrogen and helium-broadened microwave opacity of ammonia based on extensive laboratory measurements, Icarus, 202, 316-335, doi:10.1016/j.icarus.2009.02.002. | ADS Cites BibTeX DOI |
2) | Adriani, Alberto, et al. (2008), JIRAM, the Image Spectrometer in the Near Infrared on Board the Juno Mission to Jupiter, Astrobiology, 8, 613-622, doi:10.1089/ast.2007.0167. | ADS Cites BibTeX DOI |
1) | Matousek, Steve (2007), The Juno New Frontiers mission, Acta Astronautica, 61, 932-939, doi:10.1016/j.actaastro.2006.12.013. | ADS Cites BibTeX DOI |
Input file: Juno_Known_20240304.doi (2024-Dec-09 11:20:05) Citations/BibTeX file: Juno_Known_20240304.bibtex (2024-Dec-09 11:20:21)Below is a list of DOIs of the 434 papers with DOIs, in alphabetical order:
10.1002/2016GL072187
10.1002/2016GL072286
10.1002/2016GL072325
10.1002/2016GL072443
10.1002/2016GL072454
10.1002/2016JA022565
10.1002/2016JA022583
10.1002/2016RS005954
10.1002/2017GL072600
10.1002/2017GL072831
10.1002/2017GL072836
10.1002/2017GL072837
10.1002/2017GL072841
10.1002/2017GL072850
10.1002/2017GL072866
10.1002/2017GL072889
10.1002/2017GL072902
10.1002/2017GL072905
10.1002/2017GL072912
10.1002/2017GL072923
10.1002/2017GL072929
10.1002/2017GL072940
10.1002/2017GL072954
10.1002/2017GL072983
10.1002/2017GL073019
10.1002/2017GL073029
10.1002/2017GL073036
10.1002/2017GL073073
10.1002/2017GL073091
10.1002/2017GL073114
10.1002/2017GL073129
10.1002/2017GL073132
10.1002/2017GL073133
10.1002/2017GL073137
10.1002/2017GL073140
10.1002/2017GL073148
10.1002/2017GL073156
10.1002/2017GL073159
10.1002/2017GL073160
10.1002/2017GL073175
10.1002/2017GL073177
10.1002/2017GL073180
10.1002/2017GL073186
10.1002/2017GL073377
10.1002/2017GL073383
10.1002/2017GL073421
10.1002/2017GL073444
10.1002/2017GL073529
10.1002/2017GL073592
10.1002/2017GL073629
10.1002/2017GL073730
10.1002/2017GL074118
10.1002/2017GL074277
10.1002/2017GL074366
10.1002/2017GL075106
10.1002/2017GL075545
10.1002/2017GL076878
10.1002/2017GL076901
10.1002/2017JA024860
10.1002/2017JA025046
10.1002/2017JA025106
10.1002/2017JE005272
10.1002/2018GL077312
10.1007/s10509-016-2842-9
10.1007/s11214-013-0025-3
10.1007/s11214-013-9990-9
10.1007/s11214-014-0036-8
10.1007/s11214-014-0040-z
10.1007/s11214-014-0079-x
10.1007/s11214-014-0094-y
10.1007/s11214-016-0265-0
10.1007/s11214-017-0334-z
10.1007/s11214-017-0345-9
10.1007/s11214-017-0349-5
10.1007/s11214-017-0396-y
10.1007/s11214-017-0428-7
10.1007/s11214-017-0429-6
10.1007/s11214-017-0430-0
10.1007/s11214-020-00705-7
10.1007/s11214-023-00961-3
10.1016/j.actaastro.2006.12.013
10.1016/j.actaastro.2015.11.001
10.1016/j.asr.2013.03.015
10.1016/j.icarus.2009.02.002
10.1016/j.icarus.2010.11.035
10.1016/j.icarus.2012.11.026
10.1016/j.icarus.2013.11.004
10.1016/j.icarus.2014.06.017
10.1016/j.icarus.2015.12.011
10.1016/j.icarus.2016.04.001
10.1016/j.icarus.2016.07.013
10.1016/j.icarus.2017.01.004
10.1016/j.icarus.2017.05.015
10.1016/j.icarus.2017.06.007
10.1016/j.icarus.2018.04.020
10.1016/j.icarus.2019.03.022
10.1016/j.icarus.2019.04.003
10.1016/j.icarus.2019.113405
10.1016/j.icarus.2019.113475
10.1016/j.icarus.2019.113607
10.1016/j.icarus.2020.114215
10.1016/j.icarus.2021.114742
10.1016/j.icarus.2022.114937
10.1016/j.icarus.2022.114994
10.1016/j.icarus.2022.115169
10.1016/j.icarus.2022.115261
10.1016/j.icarus.2023.115815
10.1016/j.icarus.2024.115955
10.1016/j.icarus.2024.116005
10.1016/j.icarus.2024.116006
10.1016/j.icarus.2024.116028
10.1016/j.icarus.2024.116139
10.1016/j.icarus.2024.116334
10.1016/j.jqsrt.2017.08.008
10.1016/j.pss.2010.05.003
10.1016/j.pss.2019.06.001
10.1016/j.pss.2019.104781
10.1016/j.pss.2021.105395
10.1016/j.pss.2022.105597
10.1029/2012GL053873
10.1029/2017JA025113
10.1029/2018GL078566
10.1029/2018GL078864
10.1029/2018GL078973
10.1029/2018GL079118
10.1029/2018GL080490
10.1029/2018GL081129
10.1029/2018GL081227
10.1029/2018JA025639
10.1029/2018JA025797
10.1029/2018JA026169
10.1029/2018JA026297
10.1029/2018JA026321
10.1029/2018JA026431
10.1029/2018JE005555
10.1029/2018JE005752
10.1029/2019EA001061
10.1029/2019GL082951
10.1029/2019GL083442
10.1029/2019GL083842
10.1029/2019GL084146
10.1029/2019GL084201
10.1029/2019GL084799
10.1029/2019GL085393
10.1029/2019GL086527
10.1029/2019GL086572
10.1029/2019JA026626
10.1029/2019JA026862
10.1029/2019JA026997
10.1029/2019JA027007
10.1029/2019JA027306
10.1029/2019JA027314
10.1029/2019JA027382
10.1029/2019JA027458
10.1029/2019JA027485
10.1029/2019JA027486
10.1029/2019JA027633
10.1029/2019JA02766310.1002/essoar.10503657.1
10.1029/2019JA027676
10.1029/2019JA027693
10.1029/2019JA027696
10.1029/2019JA027699
10.1029/2019JE006096
10.1029/2019JE006098
10.1029/2019JE006165
10.1029/2019JE006206
10.1029/2019JE006262
10.1029/2019JE006292
10.1029/2019JE006293
10.1029/2019JE006354
10.1029/2019JE006366
10.1029/2019JE006367
10.1029/2019JE00636910.1002/essoar.10502999.1
10.1029/2020AV00027510.1002/essoar.10502511.2
10.1029/2020EA001229
10.1029/2020EA001254
10.1029/2020EA001338
10.1029/2020GL087623
10.1029/2020GL088198
10.1029/2020GL088397
10.1029/2020GL088432
10.1029/2020GL089267
10.1029/2020GL089721
10.1029/2020GL089732
10.1029/2020GL089818
10.1029/2020GL09002110.1002/essoar.10503834.1
10.1029/2020GL090764
10.1029/2020GL09083910.1002/essoar.10504411.1
10.1029/2020GL091579
10.1029/2020GL091627
10.1029/2020GL091797
10.1029/2020JA027868
10.1029/2020JA027904
10.1029/2020JA027933
10.1029/2020JA027957
10.1029/2020JA027964
10.1029/2020JA027968
10.1029/2020JA028052
10.1029/2020JA028138
10.1029/2020JA028142
10.1029/2020JA028152
10.1029/2020JA02858610.1002/essoar.10504085.1
10.1029/2020JA028697
10.1029/2020JA028713
10.1029/2020JA028717
10.1029/2020JA028742
10.1029/2020JA028949
10.1029/2020JA028971
10.1029/2020JA02908510.1002/essoar.10506065.1
10.1029/2020JE006399
10.1029/2020JE00640310.1002/essoar.10502154.1
10.1029/2020JE00640410.1002/essoar.10502179.1
10.1029/2020JE006415
10.1029/2020JE006416
10.1029/2020JE006504
10.1029/2020JE006508
10.1029/2020JE006509
10.1029/2020JE006522
10.1029/2020JE006526
10.1029/2020JE006659
10.1029/2020JE006686
10.1029/2020JE006772
10.1029/2020JE006795
10.1029/2020RS00718410.1002/essoar.10506936.1
10.1029/2021GL09291210.1002/essoar.10506285.1
10.1029/2021GL093021
10.1029/2021GL093964
10.1029/2021GL094235
10.1029/2021GL095006
10.1029/2021GL095457
10.1029/2021GL095651
10.1029/2021GL095756
10.1029/2021GL095833
10.1029/2021GL096994
10.1029/2021JA029190
10.1029/2021JA029195
10.1029/2021JA029263
10.1029/2021JA029426
10.1029/2021JA02943510.1002/essoar.10506795.1
10.1029/2021JA029446
10.1029/2021JA029450
10.1029/2021JA029469
10.1029/2021JA02960810.1002/essoar.10507161.2
10.1029/2021JA02967910.1002/essoar.10503105.2
10.1029/2021JA029710
10.1029/2021JA029853
10.1029/2021JA029885
10.1029/2021JA02988610.1002/essoar.10507765.1
10.1029/2021JA029894
10.1029/2021JA029930
10.1029/2021JA030040
10.1029/2021JA030160
10.1029/2021JA03018110.1002/essoar.10509272.1
10.1029/2021JA030224
10.1029/2021JE006858
10.1029/2021JE006928
10.1029/2021JE00695410.1002/essoar.10507057.1
10.1029/2021JE007055
10.1029/2021JE007138
10.1029/2021JE007159
10.1029/2021RS007387
10.1029/2022GL098053
10.1029/2022GL098077
10.1029/2022GL098111
10.1029/2022GL098420
10.1029/2022GL098474
10.1029/2022GL098572
10.1029/2022GL098591
10.1029/2022GL098600
10.1029/2022GL098633
10.1029/2022GL098682
10.1029/2022GL098708
10.1029/2022GL098741
10.1029/2022GL098839
10.1029/2022GL099139
10.1029/2022GL099141
10.1029/2022GL099211
10.1029/2022GL099285
10.1029/2022GL099475
10.1029/2022GL099532
10.1029/2022GL099545
10.1029/2022GL099775
10.1029/2022GL099794
10.1029/2022GL099832
10.1029/2022GL100281
10.1029/2022GL100597
10.1029/2022GL101555
10.1029/2022GL101565
10.1029/2022GL101688
10.1029/2022GL102321
10.1029/2022JA030293
10.1029/2022JA030334
10.1029/2022JA030418
10.1029/2022JA030431
10.1029/2022JA030460
10.1029/2022JA030497
10.1029/2022JA030586
10.1029/2022JA030675
10.1029/2022JA030719
10.1029/2022JA031009
10.1029/2022JA031155
10.1029/2022JA031180
10.1029/2022JA031199
10.1029/2022JA031237
10.1029/2022JA031280
10.1029/2022JE007241
10.1029/2022JE007323
10.1029/2022JE007479
10.1029/2022JE007493
10.1029/2022JE007509
10.1029/2022JE007609
10.1029/2022JE007610
10.1029/2022JE007625
10.1029/2022JE007637
10.1029/2023AV001111
10.1029/2023EA003147
10.1029/2023GL102921
10.1029/2023GL103131
10.1029/2023GL103456
10.1029/2023GL103635
10.1029/2023GL103894
10.1029/2023GL104123
10.1029/2023GL104374
10.1029/2023GL104685
10.1029/2023GL105549
10.1029/2023GL105598
10.1029/2023GL105775
10.1029/2023GL105782
10.1029/2023GL105809
10.1029/2023GL106637
10.1029/2023GL106810
10.1029/2023GL106971
10.1029/2023GL107431
10.1029/2023JA031288
10.1029/2023JA031312
10.1029/2023JA031363
10.1029/2023JA031396
10.1029/2023JA03143610.22541/essoar.167751577.72637945/v1
10.1029/2023JA03165610.22541/essoar.168298676.61403547/v1
10.1029/2023JA031901
10.1029/2023JA031985
10.1029/2023JA032043
10.1029/2023JA032113
10.1029/2023JA032218
10.1029/2023JA032280
10.1029/2023JA032322
10.1029/2023JE007859
10.1029/2023JE007890
10.1029/2023JE008085
10.1029/2023JE008105
10.1029/2023JE00813010.22541/essoar.168394732.26574509/v1
10.1029/2023JE008279
10.1029/2024AV001171
10.1029/2024EA003552
10.1029/2024GL108422
10.1029/2024GL108430
10.1029/2024GL109495
10.1029/2024GL109691
10.1029/2024GL110205
10.1029/2024GL110206
10.1029/2024GL110209
10.1029/2024GL110300
10.1029/2024GL111372
10.1029/2024GL111882
10.1029/2024JA032422
10.1029/2024JA032572
10.1029/2024JA032604
10.1029/2024JA032624
10.1029/2024JA032677
10.1029/2024JA032689
10.1029/2024JA032715
10.1029/2024JA032853
10.1029/2024JA032926
10.1029/2024JA032976
10.1029/2024JE008368
10.1038/nature23648
10.1038/nature25491
10.1038/nature25775
10.1038/nature25776
10.1038/nature25793
10.1038/s41467-019-10708-w
10.1038/s41467-022-32299-9
10.1038/s41467-024-50449-z
10.1038/s41550-017-0178
10.1038/s41550-018-0442-z
10.1038/s41550-018-0523-z
10.1038/s41550-019-0772-5
10.1038/s41550-019-0819-7
10.1038/s41550-020-1009-3
10.1038/s41550-021-01554-2
10.1038/s41550-022-01774-0
10.1038/s41550-023-02123-5
10.1038/s41550-024-02206-x
10.1038/s41561-021-00781-6
10.1038/s41567-021-01458-y
10.1038/s41586-018-0156-5
10.1038/s41586-018-0468-5
10.1038/s41586-020-2532-1
10.1051/0004-6361/202243207
10.1073/pnas.2120486119
10.1089/ast.2007.0167
10.1093/mnras/stab740
10.1093/mnras/stz2657
10.1126/sciadv.abf0851
10.1126/science.aal2108
10.1126/science.aam5928
10.1126/science.aat1450
10.1126/science.abf1015
10.1126/science.abf1396
10.1140/epjp/i2017-11548-y
10.1553/PRE8s1
10.1553/PRE8s13
10.1553/PRE8s59
10.2514/1.G004503
10.2514/1.G005311
10.25546/103104
10.3389/fspas.2023.1016345
10.3390/rs15030841
10.3847/0004-637X/820/2/91
10.3847/1538-3881/aa72db
10.3847/1538-3881/aaae01
10.3847/1538-3881/aace02
10.3847/1538-3881/aada81
10.3847/1538-3881/aae525
10.3847/1538-3881/aafb36
10.3847/1538-3881/abd414
10.3847/1538-4357/acb7e0
10.3847/1538-4365/aafdaa
10.3847/2041-8213/ab1086
10.3847/2041-8213/ab288e
10.3847/2041-8213/ac1d50
10.3847/PSJ/ac7ec8
10.3847/PSJ/acaf6b
10.3847/PSJ/ad24f4