Fluxes within lo Oval: North vs. South

Drake A. Ranquist
LASP and University of Colorado - Boulder

Introduction

- The internal magnetic field models of Jupiter seem to have stronger magnetic fields in the northern hemisphere than in the south
- Flux, through the ovals created by Io's footprints, should be equal for the north and south

Step 1: Trace Io Footprints Onto Sphere

- Io Footprints come from Bertrand Bonfond and is reproduced in Hess et al. (2011)
- For each model, we trace along the magnetic field lines that pass through the lo footprints from an oblate spheroid to a spherical surface
- 1 /oblateness = 15.41
- Step Size of Trace $=0.0001 \mathrm{R}_{\mathrm{J}}$
- Easier to integrate over a sphere than an oblate spheroid

Figure
Exaggerated for Emphasis

Step 2: Rotate Ovals to the Equator

- Differential areas are more constant along the equator of a sphere than the poles
- In spherical coordinates, a rotation of 90° is:

$$
\begin{aligned}
& \theta^{\prime}=\arccos (\sin \theta \sin \phi) \\
& \phi^{\prime}=-\arctan (\cot \theta \sec \phi)
\end{aligned}
$$

- Each point must be rotated back to the poles to calculate the magnetic field using:

$$
\begin{aligned}
& \theta^{\prime}=\arccos (-\sin \theta \sin \phi) \\
& \phi^{\prime}=\arctan (\cot \theta \sec \phi)
\end{aligned}
$$

Must correct for ambiguity of arctangent

Step 3: Interpolate Between lo Footprints

- To determine the boundaries of the surface integral, must interpolate between the 36 Io footprints
- Used IDL's INTERPOL command with a Spline fit
- Cubic spline to the nearest four neighbors
- Done twice. Once for the upper half of the oval and once for the lower half of the oval
- Used five times +1 the number footprints, spread evenly over longitude

Step 4: Numerically Integrate

- Solve for the flux by multiplying B_{r} by the differential area $r^{2} \sin \theta d \theta d \phi$ over the entire oval - $r=1 R_{j}$ on the sphere
- We use a differential angle of 0.01° for both $\mathrm{d} \theta$ and d ϕ

Results

	VIP4	VIT4	VIPAL
North (TWb)	4.062	3.885	3.856
South (TWb)	-4.010	-4.086	-3.680
-North/South	$\mathbf{1 . 0 1 3}$	$\mathbf{0 . 9 5 0 9}$	$\mathbf{1 . 0 4 8}$

Conclusions

- There is a discrepancy between the north and south of:
- VIP4: 1.3\%
- VIT4: 4.9%
- VIPAL: 4.8%
- Removing interpolation only creates a 0.2% increase in discrepancy
- Adding the atmosphere reduces the discrepancy by 0.5%
- Maybe errors in footprint locations can account for this?
- Not likely to be a big enough factor
- This method could be another constraint on future magnetic field models

