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Abstract

A new coordinate system (Interstellar Heliospheric Coordinates, or IHC) is introduced
to enable the detailed study of the influence of the interstellar wind on the heliosheath.
Recent, in situ measurements of plasma velocities in the heliosheath by Voyager 2 are
projected into the IHC system and analyzed. We consider steady state flows as well
as time dependent phenomena, and we show that a transient event with no obvious
cause or direction takes a particularly simple form in IHC.
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Chapter 1

Introduction

1.1 The Heliosphere

The solar wind is a supersonic flow of plasma that originates in the sun's corona. It

blows out a bubble in the interstellar medium (ISM) known as the heliosphere. The

solar wind speed in general depends on time and space, but it varies very little as it

travels outward. Typical velocities are about 400 km/s, and the density falls off with

the inverse-square of the helioradius, reaching about 7 cm -3 at 1 AU.

The solar wind and the surrounding ISM constitute different magnetic field topolo-

gies, so they do not mix. Instead they remain separated by an interface known as the

heliopause. The heliopause is the boundary of the heliosphere and the limit of the

sun's material extent.

Because the solar wind is supersonic, it must undergo a shock before colliding with

the heliopause. This is the termination shock, a supercritical and quasi-perpendicular

MHD discontinuity [6] where the solar wind transitions from supersonic to subsonic

flow. It lies at a helioradius of about 80-100 AU.

The layer of shocked solar wind between the termination shock and the heliopause

is known as the heliosheath. It is in the heliosheath that the solar plasma first becomes

causally connected to the ISM. One of the consequences of this is the viscous trans-

fer of shear momentum from the interstellar wind to the heliosheath. This should

cause the heliosheath plasma to flow tangentially down the heliotail, which is the

heliosphere's exhaust port. A diagram of the important features of the heliosphere is

provided in Figure 1-1.



Figure 1-1: The structure of the heliosphere in an interstellar wind [1].
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1.2 The Voyager Program

Voyagers 1 and 2 were launched in 1977 to study Jupiter and Saturn. Both probes

were able to take advantage of a convenient planetary alignment which allowed them

to slingshot into the outer solar system, with Voyager 2 visiting Uranus and Neptune

along the way. Each spacecraft was equipped with plasma diagnostic instruments,

but the instrument on Voyager 1 malfunctioned shortly after Saturn encounter. Thus

when Voyager 1 crossed the termination shock in December 2004, information on

heliosheath velocities was limited to two-dimensional estimates provided by the Low

Energy Charged Particle detector.

Voyager 2 crossed the termination shock in August 2007 with its plasma instru-

ment fully functional. It has been reporting on plasma parameters in the heliosheath

ever since. These are the first three-dimensional pictures of velocity space to become

available from the edge of the heliosphere.

1.3 Motivation

Since Voyager 2's crossing of the termination shock, several studies (see for example

[6, 7]) have reported on plasma parameters in the heliosheath, including bulk velocity.

The predominant coordinate system used in these reports has been the heliographic

system (discussed in section 3), which has required the investigators to make assump-

tions about the approximate location of the interstellar wind stagnation point, and

hence the meaning of their results.

The purpose of this thesis is to characterize the velocity field of the heliosheath

in a coordinate system that is appropriate to the geometry of the heliosphere under

the influence of an interstellar wind. It is our hope that this analysis shines light on

some observations that have proved difficult to understand in less physically appro-

priate coordinate systems, and that it may lend itself naturally to comparison with

theoretical models of the heliosheath.
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Chapter

Data Acquisition and Processing

2.1 The Voyager Plasma Instrument

All of the data presented in this thesis was taken by the Plasma Science Experiment

(PLS) aboard Voyager 2 (see Figure 2-1). The instrument consists of four modulated-

grid Faraday cups, with the three main cups A, B, and C oriented 200 from the

symmetry axis of the cluster, and separated by 1200 of azimuth [3].

Figure 2-2 shows a schematic diagram of one of the Faraday cups. Grids 1 and 3

are in contact with the walls of the cup, which is grounded to the spacecraft body. The

two separate volumes bounded by grid 1, grid 3, and the walls constitute electrically

isolated Faraday cages. For a given energy channel k, the potential of grid 2 is

modulated by a square-wave with limits (k and 1 k+1 . Modulation is available

in two different resolutions, designated L-mode (low resolution) and M-mode (high

resolution). The Ok' are given by the formulae:

B

Figure 2-1: Sensor arrangement on the Voyager Plasma Science Instrumnet (PLS) [2].
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Figure 2-2: Schematic diagram of a modulated-grid Faraday cup [5].

4k = (6 0 (1.3 3 3 5 2 )k-1 - 50) volts for k = 1 to 17 in L-mode. (2.1)

4k = (60 (1.0 3 6 6 3 )k-1 - 50) volts for k = 1 to 129 in M-mode. (2.2)

Finally, grid 4 is maintained at a highly negative potential to reflect the majority of

incoming electrons.

The current measured at the collector plate consists of two components. First,
there is a steady base value representing the current of protons whose normal velocities

v, satisfy:

my
" > Ik+l (2.3)

2q

where m is the mass of the proton and q is its charge. Second, there is an alternating

component which oscillates at the frequency of modulation, but 180' out of phase.
The amplitude of the alternating signal represents the channel current Ik of protons

whose v, satisfy [5]:

mv
( k < M < (k+ 1  (2.4)

2q

The channel currents Ik are then amplified, filtered and integrated before being sam-

pled by an 8-bit logarithmic A/D converter and digitally trasmitted [3].



2.2 The Reduced Distribution Function

Consider the orthonormal basis {I, tl, t2} of a Faraday cup, where h is the cup normal

and t 1, t 2 are the transverse dimensions. The measured current Ik is related to the

velocity distribution function f ( ) by

/UZk+- 1  o 
_OO

Ik = qA vnd, dvt dvt2f ( v )GA( v ) (2.5)
'U k  

OO0 f-O

where A is the area of the collector plate, GA( V) is the geometric transmission func-

tion of a cup with normal vector ft, and vk is the velocity of a proton that is just

stopped by the potential 4Ik. That is,

vk=k (2.6)

We may simplify Equation 2.5 considerably by making two key approximations. First,

the sensor is oriented in such a way that the solar wind is streaming into the cups with

a bulk velocity V, >> Vth, where Vth is the thermal speed. Therefore the fraction of

particles approaching the cup with an angle of incidence greater than the cup's field-

of-view (which is about 450 [3]) is negligible, and we approximate

f(" )Gi( )) - f ( v) (2.7)

Second, the solar wind is sufficiently warm, and the channel spacing sufficiently small

(Vth >> Vk+1 - Vk), that f( V) is approximately constant over any given channel [2].

Therefore,

jVk+1 kf ( , Vtl Vt2) 2 2)

S(V, , vt2)dv 2 (Vk+1 - Vk

f (vk, {1tl, Vt2) k AVk (2.8)

where

vk = (Vk+l + Vk)/2 and Avk = vk+1 - vk (2.9)

Using these approximations, we write

Ik f qAikAVkdvt d vtdVtf(Vk, Vt 1 , vt2 ) (2.10)

We recognize the double integral as the reduced distribution function,



Figure 2-3: Sample energy-per-charge spectra from the three main Faraday cups [21.

F(v) _ dvt,dt2f (v n vt, t2)
_O _OO

(2.11)

and conclude that the value of the reduced distribution function at the mean channel

speed Vk is:

F(k) = q k
qAdvekk

(2.12)

A sample measurement of the reduced distribution functions computed from equa-

tion 2.12 for the three main cup normals {iA, riB, iC }, is shown in Figure 2-3. The

ion current displays two clear peaks: one for the proton population, and one for the

alpha population (which is about 1/20 as abundant). The alpha population appears

to be centered at twice the mean velocity of the protons (shown on a log scale), but

in fact the protons and the alphas have equal bulk velocities. The shifted alpha peak

in the spectrum is merely an artifact of the channels representing energy-per-charge,
and with four times the mass and twice the charge, the alphas have twice the energy-

per-charge as the protons (at equal velocity). The separation of the two peaks in this

example allows us to easily pick out the proton population, but the proton and alpha

populations are not always so distinguishable.
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2.3 Bulk Velocity

Once we have the reduced distribution function along a cup normal, our next task is

to compute the bulk velocity V represented by such a distribution. There are two

common ways to do this, and each way is appropriate to a different situation.

2.3.1 Maxwellian Fits

One way to compute the bulk velocity is by assuming that the distribution is Maxwellian

(i.e. thermal equilibrium has been achieved):

F(v,) = n M exp
V 7r U

(vM V,)2]
2kT (Vn -n2

where n is the density and T is the temperature. We can then fit this form to

the measured F(k) from Equation 2.12 by least-squares and determine the best fit

parameters n, T, and V,. The advantage of this method is that it allows us to scale

the distribution function by an analytic correction factor 1/G( v) and thus obtain

reliable results in situations where the assumption that f(v)G(-v) a f(v) breaks

down. The disadvantage is that it assumes the distribution function to be Maxwellian,

which is not always the case, especially in the heliosheath.

2.3.2 Moments Calculation

The other way to compute the bulk velocity is from its definition as the first moment

of the velocity distribution function. For any f ( ), we have

V- = 1
V

n

1
n

jO '00 00 v

SvnF(v n)dvn
_oo

(2.14)

where

n jj OO d3OOV

n = F(v )dv

In terms of our discrete channels, this becomes

(2.15)

(2.13)



V= -Z vkF(vk)AVk

k

SnqA Ik (2.16)
k

where

S= ZF(Vk)AVk
k

S 1 : Ik (2.17)qA k

or just

V, = k (2.18)
E Ik;k

2.4 From Cup Normals to Spacecraft Axes

Once we have the bulk velocities V~FC, VBF~, and V~c along the three Faraday cup

normals, we want to transform them into an orthonormal basis - namely, that of

the spacecraft axes. This can be done with a single matrix, as will be shown here.

In terms of the spacecraft orthonormal basis vectors f{ sc, sc, sc}, the Faraday

cup normals are given by:

AFC = -isc sin 01 cos 02 - Psc sin 01 cos 03 - Zsc COS 01 (2.19)

BFC = is, sin 01 cos 02 - Ysc sin 01 cos 03 - Zsc cos 01 (2.20)

CFC = 0S sin 01 - 2SC cos 01  (2.21)

where 01 = 20', 02 = 30', and 03 = 600 [2]. We can invert these equations to obtain:

sB - nA
:se = (2.22)

2 sin 01 cos 02

= c - I(nA + hB)
ySc 2 (2.23)sin 01(1 + cos 03)

2-(nA + ftB) + rC COS 0 3
ZSCC0 = COS03 (2.24)cos01(1 + cos 0 3)



Therefore the wind velocity in spacecraft coordinates, in terms of the measurements

(VAc , VBF , V~c) taken along the Faraday cup normals, is given by:

VSC - VA

x ~2 sin 01 cos 02
V c 1(V FC FC)

V - (VAC + Vc)
S= sin 01 (1 + cos 03)

VC (VC + VBFC) + VCFC cos 03

cos 01(1 + cos 03)

(2.25)

(2.26)

(2.27)

Or, in matrix notation,

V SC = MSC V FC
=MCV

(2.28)

-1

2 sin 01 cos 02
-1

2 sin 01 (1 + cos 03)
-1

2 cos 01(1 + cos 03 )

1
2 sin 01 cos 02

-1

2 sin 01(1 + cos 03)
-1

2 cos 01(1 + cos 03)

0

1

sin 01(1 + cos 03 )
-1

cos 01 (1 + cos 03)

is the transformation matrix from cup to spacecraft coordinates. From the spacecraft

axes, the velocity data is then rotated into one of the heliocentric coordinate systems

described in section 3.

where

MSC =

\



22



Chapter 3

Coordinate Systems

In this section we discuss two coordinate systems that have traditionally been used

to describe observations in the solar system, and then introduce a new system which

is appropriate for the heliosheath.

3.1 Ecliptic

Ecliptic coordinate systems are oriented with the z-axis normal to the earth's orbit

(the ecliptic plane). Since the ecliptic plane is not constant from year to year, space

scientists typically use the orbit of 1950 as the fundamental - this is called the

ECL50 system. ECL50 comes in two versions: earth-centered and sun-centered. The

Voyager program uses sun-centered ECL50, so we will define only this system here,
and drop the modifier altogether.

The cartesian basis vectors in ECL50 are:

* ZECL50 - c^>,, where w is the angular velocity of Earth's orbit.

* xECL5 O, which lies along the intersection of the ecliptic with the equatorial plane

of the earth.

* yECL50 = ZECL50 X XECL50, which completes the right-handed system.

3.2 Heliographic

Heliographic systems are oriented with the z-axis normal to the sun's rotational equa-

tor (the heliographic plane). Again, there are at least two versions of the heliographic

system that are common in the space sciences: a cartesian version and a curvilinear

version. We discuss each of them here.



Longitude of oscending node'
a 74'22' + .84'(year-1900)

* Earth Spin Vector

Figure 3-1: The ECL50 and Heliographic coordinate systems [7].

The cartesian basis vectors in the heliographic system are:

* Z CHG = , where *w is the angular velocity of the sun's rotation.

* XHG, which lies parallel to the intersection of heliographic and ecliptic planes

and points toward the ascending node.

* HG = ZHG X HG, which completes the right-handed system.

The relation between the ecliptic and heliographic systems is shown in Figure 3-1. A

curvilinear basis is also common in the heliographic system. Its basis vectors are:

* RHG, the radial direction, defined as the the sun-to-spacecraft unit vector.

* THG = X c RHG/JLO X RHG|, the tangential direction.

SNHG = RHG X THG, the normal direction, which completes the right-handed

system.



The longitudinal meridian coincides with XHG and the ascending node. The RTN

system should not be confused with the traditional {~, 0, b} spherical polar system,
with which it bears many similarities but one crucial difference - the bases differ by

a sign:

R = (3.1)

T = (3.2)

N = -O (3.3)

notice that an odd permutation between the ordered triplets preserves the right-

handedness of both bases.

3.3 Interstellar Heliospheric

We now introduce a coordinate system which we call Interstellar Heliospheric Coor-

dinates (IHC). IHC is a heliocentric system which has its z-axis pointed toward the

interstellar wind stagnation point. That is,

XIHC = -VISW/I VISW (3.4)

where Visw is the interstellar wind velocity. Lallement et al. [4] found the direction

to the stagnation point to be at ecliptic latitude 0 = 9.00 and longitude A = 252.20.

Using these values, the components of the IHC z-axis, in ecliptic coordinates, are:

(XHC, YIHC, ZIHC) = (cos / cos A, cos 0 sin A, sin 3) (3.5)

The x-axis is chosen to lie in the heliographic plane:

:IHC - ZIHC X WO/IHC X (wo0 (3.6)

and the y-axis completes the right-handed system:

YIHC = IHC X XIHC (3.7)

From this, the spherical polar system is constructed in the usual way:

* rIHC is the sun-to-spacecraft displacement vector

* IHC - ZIHC X rIHC/I IHC X rIHC , and



* OHC - IHC X TIHC

The advantage of the IHC system is that it allows us to easily distinguish the effects
of the interstellar medium from those which originate in the heliosphere: Interstellar

effects should manifest themselves in the rO planes and remain relatively free of 4
dependence.



Chapter 4

Results

4.1 Data

Figure 4-1 shows the heliosheath velocities in RTN and IHC coordinates. In each

system we see a sharp drop in radial velocity and a corresponding excitation in the

transverse velocities around decimal year 2007.65. This is the crossing of the termina-

tion shock. After this, the spacecraft is in the heliosheath, which displays considerable

variation; each velocity component takes on a base value and fluctuates about that

value. Then, around decimal year 2008.6, we see a transient event which drastically

affects nearly every component in the system. The remainder of this section is de-

voted to analyzing the steady state flows and variations observed in the heliosheath

throughout the year 2008, with particular focus on the transient event of day 220.

4.2 Analysis

4.2.1 Steady State Flows

If we exclude the transient event (the period 2008.5-2008.7), and take the average

value of each IHC velocity component over the rest of 2008, we get:

(V "HC) = (133.30 ± 0.05) km/s (4.1)

(VIHC) = (54.33 ± 0.07) km/s (4.2)

(V2HC) = (28.97 ± 0.06) km/s (4.3)

where the errors are the standard error on the mean. The heliosheath plasma flow

takes on a strongly positive OIHC component in accordance with the predicted influence
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of the interstellar medium discussed in Section 1.1. The 0IHC component is also

consistently positive, albeit less so than the 0
IHc component. This is a puzzling effect

which requires further study.

We can also ask in which direction the flow is most (and least) constant by con-

sidering the variance matrix for the IHC velocity field:

cj- (VV{) - (V) (V) (4.4)

If we again exclude the transient event, this is:

293.6 -126.8 30.98

a= -126.8 631.1 -121.6 (km/s)2

30.98 -121.6 387.3

which has the following eigenvalues and eigenvectors:

A, = 720.5 (km/s)2 * e= (0.29, -0.89, 0.35) (4.5)

A2 = 341.1 (km/s)2 --- 2 = (-0.20, 0.30, 0.93) (4.6)

A3 = 250.4 (km/s) 2 -~ = (0.94, 0.34, 0.09) (4.7)

The eigenvectors of the variance matrix tell us the direction (in IHC coordinates, in

this case) in which we can expect to see the variance specified by the corresponding

eigenvalues. We find that, in the heliosheath, the eigenvectors of the variance matrix

are very nearly the basis vectors of the IHC system, which is a testament to its

physical relevance. The least variance is in approximately the mIHc direction and the

greatest variance is in approximately the 0 IH, direction, which is to be expected from

variations in the interstellar wind.

4.2.2 Transient Event

The transient event that occurred on day 220 of 2008 represents a dramatic reversal

of flow direction for several velocity components, in addition to nearly a doubling

of the scalar wind speed. Nothing of its magnitude has since been observed in the

heliosheath at the time of writing (May 2009). What could have caused such an

event?

One possibility we investigated is that the transient event might have been caused

by some violent solar activity, like a coronal mass ejection. To test this hypothesis, we

tried to correlate the event with any signatures in the solar wind speed measured by

the WIND satellite, which is stationed at the L1 Lagrangian point (helioradius 1
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Figure 4-2: Solar wind speed measured at L1 by the WIND satellite.

AU). The solar wind speed measured by WIND over the past three years is shown in

Figure 4-2.

We see a suspicious-looking event in which solar wind speed spiked up to 962

km/s at decimal year 2006.96. This is about 1.66 years earlier than the transient

event in question was observed by Voyager 2 at a distance of 86.6 AU. At a speed

of 962 km/s, this burst of solar wind would have reached the heliosheath in about

0.4 years, far too rapidly for this hypothesis to hold. Even if we assume that the

burst was immediately slowed to the average solar wind speed of about 400 km/s

after its encounter with WIND, it would still reach the heliosheath in about 1 year,
much less than the observed time delay. It is therefore doubtful that the two events

are correlated. Nevertheless, the WIND data during this period would merit further

study if some other mode of influence could be identified.

So what can we say about 2008 transient? Referring back to Figure 4-1, we see

that the event, which appeared in heliographic RTN coordinates as a sharp drop in

the tangential component and a spike in the normal component, manifests itself in

IHC as a purely 0-directed effect. Thus a heliographically random event is given

significance in light of the interstellar influence: the transient can be described as a

rush of shocked solar wind toward the interstellar wind stagnation point, possibly due

to inhomogeneities in the Local Insterstellar Cloud.



Chapter 5

Conclusions

The Interstellar Heliospheric Coordinate (IHC) system has demonstrated a number

of advantages over the heliographic system in the description of heliosheath-based

observations. It simply and naturally expresses the effect of shear momentum transfer

from the interstellar wind into a consistently positive velocity VHC of plasma directed

down the heliotail. Its basis has been shown to coincide with the eigenvectors of the

variance matrix measured by Voyager 2, a fact which strongly hints at its physical

significance in the heliosheath. And perhaps most remarkably, it has shed light on

the nature of a strong transient event which could be related to inhomogeneities in

the Local Insterstellar Cloud.
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Appendix A

Conventions and Definitions

A.1 Vector Notation

Throughout this thesis we frequently relate vector components in different coordinate

systems using matrix transformations. In order to keep clear the many labels adorning

the vectors, we have adopted a consistent notational convention, which is explained

here.

An arbitrary vector is represented by an arrow-topped variable and a superscript

denoting the coordinate system that its components reflect. The components are

labeled with the same variable (arrow-free), the same superscript, and an addi-

tional subscript indicating which component it represents. For example, the wind

velocity vector in spacecraft coordinates is written VSC, and its components are

(VSC, VSC, VzSC). Basis vectors are represented by a carat-topped variable subscripted

by the coordinate system to which they belong. For example, the spacecraft coor-

dinate system has basis vectors {,s, sc, zsc}. The notation is summarized by the

following expression for the wind velocity in spacecraft coordinates:

V S = V~sc~is + Vrossc + vsc5 5  (A.1)

Occasionally we need to distinguish vectors of the same variable and coordinate

system; in these cases, we add a subscript to the vectors themselves, as in V ECL50 for

the aberrated wind velocity in ECL50 coordinates.



A.2 Coordinate Systems: Quick Reference

The following table collects the variables and labeling conventions used throughout
this thesis to refer to the various coordinate systems.

Coordinate System Abbreviation Basis Vectors Components of V

Faraday Cups FC AFC, BFC, CFC VAC, IV c , V c

Spacecraft Axes SC SC, sC, ZsC Vc, Vsc, VSC
Ecliptic 1950 ECL50 XECL5O, YECL0, ZECL5O VECL50, VECL50, VECL50

Heliographic HG XHG, HG, HG VHG, VHG VzHG

RHG, THG, HG VJVHG, VHG, VJHG

Interstellar Heliospheric IHC iIHC, 
0

IHC, IHC VIHC VlHC, VHC
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