Transformation Between ECL50 and
System Ill Co-ordinate Systems



General Rotation Matrix

e |In General, for a 1x3 Column vector, there
exists a 3x3 Rotation matrix that will rotate
the vector to a new co-ordinate system

 The Rotation matrix can be a combination of
three rotations about three axes, which In
turn produces a rotation matrix that has 9
unknown coefficients.



Position Transformation

In general, the transformation can be
written as follows.
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Where X, y, and z are the original co-ordinates
and x’, y’, and z’ are the transformed ones.

The ¢ values are the Rotation matrix.



Velocity Transformation

In the Voyager | and Il data, there also happens to
be 2 vector quantities.

As well as the position, there is also velocity, so it
holds that,
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This now provides 6 equations for the 9 unknown
values in the rotation matrix.



Necessity for a Third Equation

There needs to be another set of three equations
to uniquely determine the Rotation matrix.

Let’s define a quantity similar to angular
momentum:

p—7T X v

Because both co-ordinate systems are orthogonal
and share an origin, then this momentum like
term should also be transformed with the same
exact Rotation matrix, giving a total of 9
equations and 9 unknowns.



Combining the Equations

The 9 equations can then be rewritten into one compact
matrix form:
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Now there are 9 equations and 9 unknowns so It Is

solvable.
Choosing to rewrite It:

B=R A, where R is the rotation matrix and B and A are
the matrices above.



Solving for R

If B=R A, then it is simple to solve for R using a
computer and taking the inverse of A.
RAAt'=BA™1

Because A A1 = 1, this produces the matrix for R.
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Transforming the other way

It is simple to get the transformation matrix for going

from B to A as well.
IfA=R,BthenR, = AB~!

Denoting the elements of R, with d instead of c:
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e Thus, given two vectors in each co-ordinate
system, and the fact that the co-ordinate
systems are both orthogonal and share a
common origin, 1t is possible to uniquely
determine a 3x3 Rotation matrix between the
two co-ordinate systems.



