Transformation Between ECL50 and System III Co-ordinate Systems

Logan Dougherty

General Rotation M atrix

- In General, for a 1x3 Column vector, there exists a 3×3 Rotation matrix that will rotate the vector to a new co-ordinate system
- The Rotation matrix can be a combination of three rotations about three axes, which in turn produces a rotation matrix that has 9 unknown coefficients.

Position Transformation

- In general, the transformation can be written as follows.
$\cdot\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=\left[\begin{array}{lll}c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33}\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
- Where x, y, and z are the original co-ordinates and x^{\prime}, y^{\prime}, and z^{\prime} are the transformed ones.
- The c values are the Rotation matrix.

Velocity Transformation

- In the Voyager I and II data, there also happens to be 2 vector quantities.
- As well as the position, there is also velocity, so it holds that,
$\cdot\left[\begin{array}{l}v_{x}{ }^{\prime} \\ v_{y}{ }^{\prime} \\ v_{z}{ }^{\prime}\end{array}\right]=\left[\begin{array}{lll}c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33}\end{array}\right]\left[\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right]$
- This now provides 6 equations for the 9 unknown values in the rotation matrix.

Necessity for a Third Equation

- There needs to be another set of three equations to uniquely determine the Rotation matrix.
- Let's define a quantity similar to angular momentum:
- $\vec{p}=\vec{r} \times \vec{v}$
- Because both co-ordinate systems are orthogonal and share an origin, then this momentum like term should also be transformed with the same exact Rotation matrix, giving a total of 9 equations and 9 unknowns.

Combining the Equations

- The 9 equations can then be rewritten into one compact matrix form:
$\cdot\left[\begin{array}{lll}x^{\prime} & v_{x}{ }^{\prime} & p_{x}{ }^{\prime} \\ y^{\prime} & v_{y}{ }^{\prime} & p_{y}^{\prime} \\ z^{\prime} & v_{z}{ }^{\prime} & p_{z}{ }^{\prime}\end{array}\right]=\left[\begin{array}{lll}c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33}\end{array}\right]\left[\begin{array}{lll}x & v_{x} & p_{x} \\ y & v_{y} & p_{y} \\ z & v_{z} & p_{z}\end{array}\right]$
- Now there are 9 equations and 9 unknowns so it is solvable.
- Choosing to rewrite it:
- $B=R A$, where R is the rotation matrix and B and A are the matrices above.

Solving for R

- If $B=R A$, then it is simple to solve for R using a computer and taking the inverse of A.
- $R A A^{-1}=B A^{-1}$
- Because $A A^{-1}=1$, this produces the matrix for R .
$\cdot\left[\begin{array}{lll}x^{\prime} & v_{x}{ }^{\prime} & p_{x}{ }^{\prime} \\ y^{\prime} & v_{y}^{\prime} & p_{y}{ }^{\prime} \\ z^{\prime} & v_{z}{ }^{\prime} & p_{z}{ }^{\prime}\end{array}\right]\left[\begin{array}{lll}x & v_{x} & p_{x} \\ y & v_{y} & p_{y} \\ z & v_{z} & p_{z}\end{array}\right]^{-1}=\left[\begin{array}{lll}c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33}\end{array}\right]$

Transforming the other way

- It is simple to get the transformation matrix for going from B to A as well.
- If $A=R_{2} B$ then $R_{2}=A B^{-1}$
- Denoting the elements of R_{2} with d instead of C :
$\cdot\left[\begin{array}{lll}x & v_{x} & p_{x} \\ y & v_{y} & p_{y} \\ z & v_{z} & p_{z}\end{array}\right]\left[\begin{array}{lll}x^{\prime} & v_{x}{ }^{\prime} & p_{x}{ }^{\prime} \\ y^{\prime} & v_{y}{ }^{\prime} & p_{y}{ }^{\prime} \\ z^{\prime} & v_{z}{ }^{\prime} & p_{z}{ }^{\prime}\end{array}\right]^{-}=\left[\begin{array}{lll}d_{11} & d_{12} & d_{13} \\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{33}\end{array}\right]$
- Thus, given two vectors in each co-ordinate system, and the fact that the co-ordinate systems are both orthogonal and share a common origin, it is possible to uniquely determine a 3×3 Rotation matrix between the two co-ordinate systems.

