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VOYAGER MEMORANDUM 135 (Revised) Vivom Yvan ’%“&‘“"’\ RESSINN

To: Voyager PLS internal/JPL MAGPAC team
From: Fran Bagenal
Subject:  Calculating Plasma Densities in the Io Plasma Torus

Date: January 7, 1987

T have developed the following method for calculating the density of fon and electron species at a given
point in the Io plasma torus.

INPUT: Ion and electron densities, temperatures and thermal anisotropies (T/T}) at the centri-
fugal equator as a function of radial distance.
ASSUME: (1) The temperature of each species is assumed to remain constant along a field line.

The plasma is then assumed to be distributed with latitude along a field line in
accordance with ambipolar diffusive equilibrium, i.e., we find the ambipolar electric
field that balances the centrifugal and pressure gradient forces on the plasma. For a
plasma consisting of only one ion (mass M;, charge Z) and one electron species (with
T.=T)) the resulting density distribution can be found (analytically) to be a simple
exponential scale height for small distances z from the centrifugal equator.

n = n, exp—(z/H)?

where H=[2kT(Z+1)3mQ*"2. For a multi-ion plasma we have to, determine the
ambipolar electric field numerically. :

(2) Until we have further information on the azimuthal distribution of plasma in the
Io torus the variation with longitude must be assumed to be constant (azimuthal sym-
metry) or modeled with, for example, a simple sinusoidal variation peaking, at say,
Ay = 200 degrees (c.f. models of Trauger or Morgan).

OUTPUT: Density for each ion species as functions of L-shell, centrifugal latitude and Ay
Thus with the measured radial variation, the assumed longitudinal variation and the
calculated latitudinal variation we can build a three-dimensional model.

LIMITATIONS: Since the assumption that temperature remains constant along a field line is only
really valid for low latitudes this model should not be relied on for densities above
“20° latitude. Of course, above ~33° the field lines bend over (i.e.; z decreases with
0). Closer to the planet gravity will become important. But the most serious problem
is the issue of calculating bulk properties (i.e., density and temperature) in a region
populated mainly by non-thermal particles. Nevertheless, the volume of the flux tube
decreases as cos’8 so that the high latitude plasma contributes proportionally less to
integral quantities (e.g., NL? or average T, etc.) which are the important quantities as
far as the physics is concerned.

BACKGROUND: (See Vasyliunas’ Chapter 11 of Dessler’s "Physics of the Jovian Magnetosphere” or
references in the appendix of Bagenal and Sullivan, J. Geophys. Res., 86, 8447,
1981). The idea is to find the distribution of plasma along a field line that satisfies
the i equations of field-aligned force balance for the i species:
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where [1] consists of two terms
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~where -the- second term-is- often called-the-magnetic mirror force which is zero for an-isotropic-plasma
(Py = P)). In steady state conditions [2] is the centrifugal force
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The third term [3] is the ambipolar electric force
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where ¢ is the electric potential. Thus the top equation becomes:
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If we assume P = n; T (where T is in eV) and T is constant along a field line, then
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Integrating along the field line from a reference point S, to § we have

172 m; @ {p*(S) - pX(S, Z; S) - &(S,
ni(S) = n(S,) exp[[ - —]log g((g)) + m {pT:S) P(So)} _ 44 1 }" LG }

(1 [2] 3]
Translating this into quantities that we calculate (and swopping terms [1] ans [3])

ANIS; ANIS;
n(S) = n(S,) exp[Zi P T + FACTOR A; FCENT T

- [ANIS; - 1] FMAG]

where - ANIS; = T\/T
. T; = T| = Tpeasurea (in €V)
P= ¢ ambipolar potential, normalised to S, (where P = 0).
Note P will have negative values at latitudes less than S,.

FACTOR =12m, Q*R}/q
= 0.825
= conversion of the centrifugal potential FCENT to eV.
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FCENT =P’ - p*(S,
= R? cos?0 — R? cos*0;,
. . =the c'entq'fu%al_ potential ) . )
varies with the cylindrical distance from the rotation axis, normalised to S,.
FMAG = log {B(SYB(S,)}
= the magnetic field magnitude relative to the field atS,. -

~ For a dipole magnetic field

1+ 3Sin260 12 cosO 6
1 + 3sin’0 cosh,

log {B(S)/B(S,)} = log [

UNKNOWNS:

ngS) (i.e. DOUT)
Potential, P

INPUT:
N = total no. of ion and electron species

For each species
Z = charge no.
A = mass no.
T =T} = measured temperature
ANIS = T|/T (guessed or varied)
. DIN = n(S,) = density at equator (or s/c), measured.

Geometry at equator (or s/c)
RSC = radial distance (in R;)
CLSC = 6¢ = centifugal latitude
GLSC = 6 = Jovigraphic latitude (System III)
BLSC = 6y, = magnetic latitude

Geometry at S
R = radial distance (in R})
CL = centrifugal latitude
GL = Jovigraphic latitude
BL = magnetic latitude

Also

IT = no. of iterations (10 usually ok.)

FMIN = degree of charge neutrality required (say 1/1000 of the maximum
density,i.e. © 1.0 for the hot torus).

The ambipolar potential is calculated numerically. The densities DOUT and charge neutrality F are cal-
culated for an initial guess of P (i.e. P=0). The differential of F w.r.t. P, DF, is then calculated and P
then changed. This procedure is iterated until F is less than FMIN.
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SUBROUTINE SCAHGT(N,Z,A,T,ANIS,DIN,RSC,CLSC,
*$3LON,GLSC,BLSC,R,CL,GL,BL,EPS,DOUT,IT,FMIN)
REAL*8 E1,E2,E3,EE,F,DF,C1,C2,C
DIMENSION Z(10),A(10),T(10),ANIS(10),DIN(10),DOUT(13)
DATA DEGRAD/0.01745/,FACTOR/0.825/

c

c centrifugal force

c
C2-R*R*COS(GL*DEGRAD)*COS(GL*DEGRAD)

- C1=RSC*RSC*COS(GLSC*DEGRAD)*COS(GLSC*DEGRAD) -~

C=C1-C2
c
¢ magnetic mirror force
c
F11=3.*SIN(BLSC*DEGRAD)*SIN(BLSC*DEGRAD)
F21=3.*SIN(BL*DEGRAD)*SIN(BL*DEGRAD)
F12=SQRT(1+F11)
F22=SQRT(1+F21)
F1=F12/(COS(BLSC*DEGRAD)**6)
F2=F22/(COS(BL*DEGRAD)**6)
F3=log(F2/F1)
c
¢ start iterations
c
P=0.
DO 10 K=1IT
F=0.
DF=0.
c
C species
c
DO 5 I=1,N
DOUT)=0.
E1=Z()*P/TA)y*ANIS()
E2=FACTOR*A()*C/T(I)* ANIS()
E3=(ANIS(I)-1)*F3
EE=E1+E2-E3
IF(DABS(EE).GT.75) GO TO 5
DOUT(I)=DIN(I)*DEXP(EE)
¢ add up charge
F=F+Z(I)*DOUT()
¢ calculate derivatives of F wrt P
DFE=DFE-Z()*Z(I)*DOUT )/ TI)y* ANIS)
5 CONTINUE
[F(DABS(F).LT.FMIN) GO TO 20
IF(DF.EQ.0.) GO TO 20
¢ change potential P
P=P-F/DF
10 CONTINUE
20 CONTINUE
RETURN
END
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OFFSET TILTED DIPOLE AT JUPITER

TILT

Magnetic Equator

Centrifugal Equator
/34

Rotational Equator

In meridional plane

o, On
e%_ Magnetic Equator
Centrifugal Equator
Rotational Equator
OFFSET

L% =L - A cos(\yy — AQ)

L = R/ cos 20y,

= sin ™! (sina, sin(A;; — Aly))
o, = 9.6 degrees

Afr = 292 degrees

AZr = 148 degress

A=0.131R,

£O°

9o-

In equatorial plane

sin a= sin o, sin(km - l;”)

o, = 9.6 degrees

A.;” =292 degrees

9M=eo"a
Oc =0y + /3
180°
o M
Y.\
10~ 270°
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FLUXTUBE CONTENT FOR A DIPOLE L-SHELLS

Magnetic flux through L-shell of width AL is a constant along a given field line

¢ =B A AL = constant

B, "
e T 2 RY3LAL-atequator o

Using
= Bo (1 + 3sin’0)"

L3 cos®
and (see note (b) below)
ds = R; L cos® (1 + 3sin%0)2d0

the total volume of a fluxtube width AL becomes
8 ' J'm‘x
—2[™AALds=2 " % ds

_ Iem 2r R LAL cos®®
STl (14 3sin?9) 12

R; L cos® (1 + 3sin?0)!? d@

amu
= 4nR3 L* AL[ " “cos’6 4@
Therefore the total number of ions per unit L-shell (AL = 1) is

)
- 3p2 [ == 7
N—-4RR1LJ n cos'd do
and

emu
NL? =4 R} L* jw n cos’0 do

In practical units this is numerically intergrated over ion species i and latitude steps j

NL? = [47: R}L* 106-3%9] Y. ;i cos’6; A;

T

m cm™ degrees
=8x 1028 L4 Z n; 003791‘ AG,
ij

If the plasma distribution is not symmetrically distributed about the magnetic equator then the north and south
latitudes must be integrated separately and hence
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NL? = 4x10% L* 3 n;; cos’; A,
i

over t O,, degrees of latitude.
Note:
(1) The approximation AV = A4 AL = (2nr) (rAB) Ar gives
V=4r R} L* ¥ cos®; A6,
j

(because it ignores the curvature of the element of volume AV),

D ‘-AO
AA

A©
L AL

(2) Distance s along a dipole field line as a function of latitude §
ds* =dr* + r’de?
= (4L%sin?6cos?0 + Lcos*9) db?
= (3sin?0 + 1) L2cos20 d6?
hence ds = Lcos8 (1 + 3sin®6) 4.

ar

vdo

ds

40

r=L cos?0

dr = 2L sin® cosd 40




Plasma Densities in the Io Plasma Torus

Given a point measurement in the Io plasma torus, the density of ion and electron species can be
calculated everywhere along the given magnetic field line by solving a simple force balance equation.

(V-p) + (Fo)) +niZigE =0 ()

where p is the gyrotropic pressure tensor, (F¢)) is the parallel component of the centrifugal force
in the non-inertial rotating reference frame, and E| is the ambipolar electric field.

The first term is evaluated by rewriting the pressure tensor as

p. 0 0 00 O
p= 0 p. O +1 00 0 (2)
0 0 pu 0 0 pj—ps
So
p=piI+(p—pL)bb (3)

where I is the unit tensor, is a dyadic formed from the unit vectors b along the magnetic field
direction.

The divergence of the pressure tensor is
V-p = V-pI+V-(p —pL)bb (4)
= Vpi+(py—pL)V-bb+b(b-V)(p—pL)

= (VL+V)pL + (P —pL)(b- V)b + b(V:';b)] +V)(py —p1)
= Vipi+(p)—p1)(b-V)b+Db(V-b)]+Vyp

The parallel and perpendicular compone;pts are C : oy
(V-p)L=VipL+(p—pL)(b-V)b - ()
(V-p)ji= Vypy + (p) —pL)b(V -b) - (6)

Notice that since (b- V)b = (V x b) x b+ V($2/2) = (V x b) x b, this term is always perpendicular
to b. In second term in the parallel component is evaluated as follows,

b(V-b) = b(V-—g) (7)
_ b[B(V-B)—-(B-V)B]

BZ
b

_b 0B
B2 0s
b 0B

B 0Os




So
OB

1 0
(V-p)y=Vypy— (o) —pL) 55— = Vo — (0] —pL) 5 log B (8)
B 0s Os

The second term in the force balance equation is the centrifugal force directed along the magnetic
field line. The centrifugal force is

2 . Q22
F, = n;m;v — N;Mmgae™p — 711sz2,0 (9)

where ( is the angular velocity of the corotating plasma and p is the perpendicular distance to the
spin axis. The centrifugal potential is

1
e = — /chp = - /nimiQ2pdp = ——2~n,~miﬂ2p2 (10)
By definition, 5
1
(Fo)y = = Ve = —nimim- (-2-92/)2) (11)

The final term is the ambipolar electric field. This term is by definition

oo
niZiqEy = ~niZig - (12)

The final expression for the force balance equation is

op)

0 0 /1 o0®
55 (p) —pL)7=log B — M ('2'92/)2) - niZiQEfS’ =0 (13)

Os

Assume p = ;T and that T)| is constant along the magnetic field line.

on T, G, 9 (1 4 5 od
5 = il = 1) 5 10g(B) + mami - (30202 + mizia g (14)
or
10n; (T)-TL) o m; 0 (1 5 4 Ziq 0P
or ‘ 2,2
0 0 T, 1m;Q“p Z;q®
s logn; = % [(1 T, ) log(B) + 2 T, + T, ] (16)

Integrating along the field line from a reference point S, to S we have

log

mi(S) _ Ti\,  B(S) | 1miQ%p*(S) — p*(S,)] , Zig[®(S) — 8(S,)]
m(so)‘[( ‘?ﬁ)“’gm)*i 7 T } (4

or

o T\ BS) | 1m0p%(S) ~ p(S,)] | Zal®(S) - B(S,)
n;(S) = n;(S,) exp [(1 - ﬁ) log B(S5.) + 3 7 + T } (18)




Kappa Distribution

Now consider a kappa distribution rather than a Maxwell-Boltzmann distribution. For a kappa
distribution [Meyer- Vernet et al., 1995]

Ty o)t (19)
where vy =1 — 1/(x — 1/2) and & generally lie in the range 2-6. The isotropic pressure is
p=aimin] " = ain] . o)

where ¢; is the constant of proportionality (which can be determined from the initial measured
temperature and density).

The force balance equation for an isotropic velocity distribution is

doy; nz 0 (

=Nn;m; 7

0s Js

1 o0

or
(22)

ny-20mi _ ._‘2122) o2
xn 6s—m'83(29p +qu83

Integrating along the magnetic field line from S to S,

1

(8) = {n 1 50) + (G ) a0 [2(9) = %50)] + (5= ) Za(@(9) - 250} (29)




