August 1, 2015

Fran Bagenal

Error Values for Each Measurement

From XFULL fortran subroutine within MJSANL we find...

C * C *	* * * STATISTICAL WEIGHTS FOR ERROR ANALYSIS *** * *								
C * C *	THE THERMAL NOISE (IN FEMTOAMPS) IS CNOISE WHERE * CNOISE=FAC(ICLK)*SIGNOI *								
C *	SIGNOI=35.0 FEMTOAMPS *								
C *	FAC(ICLK)=SQRT(CLOCK(3)/CLOCK(ICLK)) *								
C * C *	CLOCK(ICLK) IS THE INTEGRATION TIME IN SECONDS *								
C *	ICLK	CLOCK	FAC	*					
C *	1	0.03	5.6	*					
C *	2	0.21	2.1	*					
C *	3	0.93	1.0	*					
C * C * C * C *	FOR GS-3 ICLK=2 AND CNOISE=73.5 FEMTOAMPS * THE DIGITIZATION ERROR IS SQRT(FNOIS)*RCURR IN FEMTOAMPS WHERE * FNOIS=(10**1/64-1)**2/12 = 1.118E-4 IS THE APPROPRIATE FACTOR *								
	WEIGHT ONLY INCLUDES THE THERMAL NOISE AND IS THE SAME FOR ALL MEASURED CURRENTS								
	WEIGHT=1./(CNOISE*CNOISE)								
	WT2 INCLUDES BOTH THERMAL NOISE AND DIGITIZATION ERROR								
	VT2=1./(CNOISE*CNOISE+FNOIS*RCURR*RCURR)								

It's this second version that is preferable.

So – we have CNOISE = FAC * 35.0 fAMP FNOIS=(10**1/64-1)**2/12 = 1.118E-4 Digitization error = SQRT(FNOIS)* RCURR The net "weight" of the fit = 1/ (Error)**2 Where Error = SQRT(CNOISE*CNOISE + FNOIS*RCURR*RCURR) – this should be in FemptoAmps.

At this point the only unknowns are:

(1) RCURR – that's the current measured in a particular channel – in fAmp – which should be

read in as an integer for each time-step for each cup for each channel - and converted to fAmp.

(2) What's ICLK so that we know what FAC should be?

Each measurement header has the following.... Example from Voyager 1 electron mode (E1)

1979 64 0 0 31 404 3 16 2 111 1 3 6F6F0000

where the various things in that line stand for JTB(6),JTLMOD,jne,JCLK,kstat,ipls,ityp,lstat

JTB(6) = integer time Year Day Hour Min Sec Msec

```
jtlmod = 3 (E1)

jne = 16 (number of channels)

Jclk = ICLK = 2

kstat = 111

ipls = 1

ityp = 3

lstat = 6F6F0000
```

jclk refers to the integration time of the measurement, not the sampling time, jclk of iclk = 2 means at jupiter we were in the the 210 ms integration time (see attached table for the three integration times for the three possible values of jclk)

Capacitance	Gain	Integration	Threshold
(ICAP)	(IGAN)		mesnou
0.15 (0)	2 (0)	0.03 (1)	930
1.15 (1)	2 (0)	0.03 (1)	7130.00
0.15 (0)	20 (1)	0.03 (1)	93.00
1.15 (1)	20 (1)	0.03 (1)	713.00
0.15 (0)	2 (0)	0.21 (2)	132.86
1.15 (1)	2 (0)	0.21 (2)	1018.57
0.15 (0)	20 (1)	0.21 (2)	13.29
1.15 (1)	20 (1)	0.21 (2)	101.86
0.15 (0)	2 (0)	0.93 (3)	30.00
1.15 (1)	2 (0)	0.93 (3)	230.00
0.15 (0)	20 (1)	0.93 (3)	3.00
1.15 (1)	20 (1)	0.93 (3)	23.00

Table 3-5: Thresholds for Gains, Capacitances, and Integration Times

This table is from document from John Belcher posted here: http://lasp.colorado.edu/home/mop/files/2015/04/VoyagerDoc_2015.pdf

Worked example – close to our favorite spectrum Fred 1979 64 1016

Here's the original input file. The data numbers (integers to 256) are converted to femptoAmps (using kntcur) that becomes input to all the plotting and fitting routines.

01979 1	64 1	1010:36.448 16 219	255	2 3D3D 255 255	0 255	2.1 255 242	0.0 222 198	0.0 15064 1 «,`Û 1 537395510 179 142 0 0 0 0 0	0
2	17	32 237	236	234 231	224	211 198	193 192	192 192 192 192 192 192 192	
3	33	48 148	146	142 136	128	128 128	128 128	128 128 128 128 128 128 128	
4	49	64 156	157	159 162	162	152 126	115 50	0 0 0 0 0 0	
01979 4	64 1	1010:55.409 16 154	155	2 8D8D 154 152	0 153	2.1 157 160	0.0 162 164	0.0 15066 4 «,`Û 1 537395510 166 167 169 175 182 188 190	0
01979 1 2 3	64 1 129 257	1011:11. 9 128 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 192 192 192 192 192 192 384 -2 -2 -2 -2 -2 -2 128 128 128 128	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 192 192 -2 -2 -2 128 128 128 128 128	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 192 192 192 -2 -2 -2 128 128 128 128 128	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ø
4	385	512 -2 -2 -2 0 3 0 1011142 400	-2 -2 -2 -2 0 0 0	-2 -2 -2 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 0 0 0	-2 -2 -2 -2 0 0 0	$ \begin{array}{cccccc} -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ 0 & 0 \\ 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4	1	16 150	135	130 130	130	130 131	132 132	134 135 136 137 138 139 141	Ŭ

But we can use this original file to find that **ICLK=2 for these data at Jupiter.** So... FAC = 0.21

CNOISE = FAC * 35.0 fAMP = 7.35 fAamp $CNOISE^2 = 54.0 \text{ fAmp}^2$ Using the measured current RCURR (in fA) then $Error = SQRT(54.0 + 1.118E-4 \times RCURR*RCURR) - \text{this should be in FemptoAmps.}$

For fitting, the WEIGHT that is used should be 1/Error²