THE MANY AURORAE **OF JUPITER:** AURORAL FILAMENTS, FLARES, TRANSIENT FEATURES OF THE MAIN OVAL, SWIRLS, POLAR DAWN SPOTS, **INJECTION SIGNATURES** AND SATELLITE FOOTPRINTS

Bertrand Bonfond

Sub-regions of the polar region

Grodent et al. 2003

How big is the polar cap?

□ Vogt et al., 2011, 2015

Auroral filament

(a) (b) (d) (c)

Nichols et al., 2009

Swirl region

Flares

Waite et al., 2001

Quasi-periodic polar flares

Bonfond et al., 2011

Quasi-periodic polar flares

The quasi-periodicity can only be seen on long time-tag sequences

Bonfond et al., 2011

Quasi-periodic polar flares

Opposite hemispheres

Radio

Kimura et al., 2012

Ulysses/COSPIN/HET, Channel H9 (e⁻ >16MeV)

Electron bursts (Ulysses): 144s McKibben et al., 1993

2-3 minutes long substructures in the 40minutes bursts

Polar aurora: Different types of flares?

- Quasi-periodic flares: only obvious in 6 cases out of 14 in the HST/Exceed campaign
- Unique big flares: Are they part of a sequence?

Bonfond et al., in preparation

Polar dawn spots

Plasma injection signatures

Mauk et al. 2002

PSD1

Phase space

density gradient PSD1 > PSD2

Statistics of injection signatures

A major component of the aurorae

Bonfond et al. 2012

A major component of the aurorae

Kimura et al. 2015

Transient small scale feature

Widespread phenomenon on giant planets

- 20
 - Io, Europa and Ganymede footprints

Saturn: Enceladus footprint

Cf. Clarke et al. 2002, Pryor et al., 2011

GFP as a landmark in the magnetosphere

Bonfond et al., 2012

Local satellite-magnetosphere interaction

30 -30 -90

-150

22

Jia et al. 2009a

Interaction model

Inertial Alfvén waves + filamentation

Reflected Alfvén waves

Trans-hemispheric electron beams

Spots multiplicity evolution

27 Secondary spots Leading Spot South 6.4 6.0° 5.0° 4.0° 3.0° 2.0° 1.0° 0.0° -1.0° -2.0° -3.0° -4.0° -5.0° -6.0° 6.4 Longitude (°)

Bonfond et al., 2008

The multiple spots of the Ganymede footprint

28

The multiple spots of the Europa footprint

Bonfond et al., in preparation

Interspot distance variations

□ For a same S3 longitude, the distance can vary

Bonfond et al., 2013

Tails for the Europa and Ganymede footprints

31

Europa footprint

Ganymede footprint

Bonfond et al., in preparation

IFP features' altitude

32

Peak altitudes:
 Main spot: 900 km
 TEB spot: 700 km
 Tail: 900 km

Trailing tail models: steady state vs. Alfvén waves' multiple reflections

Jacobsen et al., 2007

Estimate of the electrons energy

34

- Monte-Carlo electron energy degradation model for theoretical distributions
- Only the Kappa distribution reproduces the observations
- Mean electrons energy:
 ~1keV (in lieu of 55 keV)
- Contradicts models based on quasi-static electric fields

Bonfond et al., 2009

Distribution	Characteristic energy (E_0)	Spectral index $(\gamma \text{ or } \kappa)$	Mean energy
Mono-energetic	2 keV (1.3 keV)		2 keV (1.3 keV)
Maxwellian	960 eV (540 eV)		1.9 keV (1.1 keV)
Kappa	70 eV (75 eV)	2.3(2.4)	1.1 keV (0.8 keV)
Power-law	4	1.9(1.8)	

Vertical distribution of the IFP tail

35

Bonfond et al., in preparation

System III spots brightness variations

Grodent et al., 2009

Short timescale variations

The usual case

Bonfond et al., 2012

An unusual case

Bonfond et al., 2012

Temporary dimming of the GFP

Bonfond et al., in preparation

Which parameter is the more likely to operate?

41

Color ratio of the GFP

Gustin et al., 2016

Color ratio of the GFP

Gérard et al., 2014

Take home messages

- The aurorae are made of many components
- The polar region is still poorly understood
- All footprints are made of at least 2 spots and a tail
- Footprints interact with injections