Jupiter's Infrared Aurora

Tom Stallard

Magnetosphere Energetic particle precipitation H*, H₂* H_2 , CH_4 etc...

Tom Stallard

Infrared observations

T. Stallard

VLT AO image with L' filter

P. Drossart

IRTF 3.53µm narrow filter J. Connerney

Infrared observations

near IR	Orton	IRTF/MORIS, SpeX spectrometer	filtered imaging and spectral scans: 0.8-2.5µm, 2.5-5.1µm (SpeX)	Ongoing throughout Ju	uno mission
			•		
TAOI				TE 2 52um parrow	filtor
I AO II	mage with	h L'filter	P. Drossart	rr 5.55µm nanow	J. Connerney
VL	Γ/ AO-in	naging of service observation	ons to cover ten near Orton IRTH	SpeX filtered auroral	Ongoing throughout
NA	CO $\operatorname{H_3}^+$ en	hission 1-hour sessions in	n Apr, May	e imaging in 20- to era 30-min intervals	Juno mission

2-5 micron H_3^+ emission

Timescale of IR emission

Stallard et al., 2016

2 micron altitudinal emission

Ur	10	et	al	۱.,	20	14
----	----	----	----	-----	----	----

near	Kasaba	Subaru /	AO-guided imaging/	scheduled: May 19, 21,
IR		IRCS	spectroscopy of H3+	24
			emission	

Saturn's altitudinal emission

Gerard et al. 2009; Stallard et al., 2012

Temperatures and Densities

Stallard/Johnson

near IR O'Donoghue	Keck /	high-spectral resolution	scheduled for 4
	NIRSpec	scanning of H3+ aurorae	half nights in May.

Ion winds

near IR	Johnson	IRTF /CSHELL	high-res. scanning spectroscopy of H₃ [⁺] auroral emission.	observations scheduled on February 3, 5, 10, 15, 17, 22, 27 and March 5
near IR	Kita	IRTF / CSHELL	high-resolution spectroscopy of H₃ ⁺ auroral emission	six half-nights scheduled: April 22, 25; May 7, 9, 19, 21

Johnson, in preparation

Ion winds

near I	RJohnson	IRTF /CSHELL	high-res. scanning spectroscopy of H₃ [⁺] auroral emission.	observations scheduled on February 3, 5, 10, 15, 17, 22, 27 and March 5
near l	RKita	IRTF / CSHELL	high-resolution spectroscopy of H₃ [⁺] auroral emission	six half-nights scheduled: April 22, 25; May 7, 9, 19, 21

Johnson, in preparation

3 micron CH_4 emission

The atmosphere is being heated at very low altitudes by auroral processes

or

• Intense auroral precipitation is resulting in convection or advection of methane from the deeper atmosphere to much higher altitudes.

Stallard et al., 2001; 2002

Heating/cooling term	8 September	11 September
Joule heating and ion drag	67.0 mW m-2	277.0 mW m-2
Particle precipitation	10.8 mW m-2	12.0 mW m-2
Downward conduction	(-)0.3 mW m-2	(-)0.4 mW m-2
E(H ₃ ⁺) cooling	(-)5.1 mW m-2	(-)10.0 mW m-2
Hydrocarbon cooling	(-)65.5 mW m-2	(-)103.3 mW m-2
Net heating rate	7.4 mW m-2	175.3 mW m-2

Melin et al., 2005

2 micron H_2 quadrupole emission

Raynaud et al., 2004

near IR	Defrère	LBT / LMIRCAM + NOMIC (7.9 µm)	AO imaging of 2 micron H2 and H3+ emission	scheduled for the last week of December and the last week of January and 5 blocks starting in March
---------	---------	-----------------------------------	---	---

Hydrocarbon thermal emission

- CH₄ at 7.7 µm, C₂H₂ at 13.2 µm, C₂H₄ at 10.5 µm (sometimes)

Kasaba: Subaru COMICS CH₄ image and polar projection

mid IR	Kasaba/Sinclair	Subaru /	stratospheric methane emission in polar	Acquired 2016 Jan 23-24 in very good
		COMICS	auroral regions.	weather conditions.
mid IR	Fletcher	VLT / VISIR	auroral heating and chemistry	observations acquired 2016 Feb 15-16, further
				obs. In March, May and July
mid IR	Sinclair/Greathouse/	IRTF / TEXES	spectroscopy to map stratospheric polar	scheduled for TEXES block:
	Fletcher		auroral regions.	April 27 – May 6.
mid IR	Kostiuk	HIPWAC	ultra high-resolution spectroscopy of	scheduled in HIPWAC block at the IRTF:
			stratospheric emission	April 18-21

Jupiter's nightside IR emission

No evidence of auroral emission equatorward of the lo spot

Stallard et al., 2015

Great Dark Spot: thermosphere weather?

Stallard et al., in preparation

Equatorial emission

H Lyman-α bulge

H₃⁺ total emission

Melin et al., in preparation Henrik Melin, hpm5@leicester.ac.uk

O'Donoghue et al., in preparation James O'Donoghue, jameso@bu.edu

Saturn's planetary period oscillations

Hunt, 2014

Jupiter's thermosphere should drive significant changes within the inner and middle magnetosphere

Smith and Aylward, 2009

Period: Jupiter Approach (2015 November 1 – 2016 July 3 [JOI-2d]

Spectral Region	PI	Facility/	Description	Date Scheduled/ Requested
CCD + near IR	Orton	IRTF/MORIS, SpeX guide camera and spectrometer	filtered imaging and spectral scans: 0.8-2.5µm, 2.5-5.1µm (SpeX)	Ongoing throughout Juno mission
near IR	Orton	IRTF/SpeX guide camera	filtered auroral imaging by IRTF staff 20- to 30-min intervals	Ongoing throughout Juno mission
near IR	Defrère	LBT / LMIRCAM + NOMIC (7.9 µm)	AO imaging of 2 micron H2 and H3+ emission	scheduled for the last week of December and the last week of January and 5 blocks starting in March
near IR	Johnson	IRTF /CSHELL	high-res. scanning spectroscopy of H3+ auroral emission.	observations scheduled on February 3, 5, 10, 15, 17, 22, 27 and March 5
near IR	Kita	IRTF / CSHELL	high-resolution spectroscopy of H3+ auroral emission for velocity-field measurements.	six half-nights scheduled: April 22, 25; May 7, 9, 19, 21
near IR	Kasaba	Subaru / IRCS	AO-guided imaging/spectroscopy of H3+ emission	scheduled: May 19, 21, 24
near IR	Kim	Gemini S/ Phoenix	3-µm spectroscopy of auroral-related CH4, hydrocarbons.	16.7 hours granted for service time between April 25 and May 20.
near IR	O'Donoghue	Keck / NIRSpec	high-spectral resolution scanning of H3+ aurorae	scheduled for 4 half nights in May.
near IR	Bonfond	VLT / NACO	AO-imaging of H3+ emission	service observations to cover ten 1-hour sessions in Apr, May
mid IR	Kasaba/ Sinclair	Subaru / COMICS	stratospheric methane emission in polar auroral regions.	Acquired 2016 Jan 23-24 in very good weather conditions.
mid IR	Fletcher	VLT / VISIR	auroral heating and chemistry	observations acquired 2016 Feb 15-16, further obs. In March, May and July
mid IR	Sinclair/ Greathouse/ Fletcher	IRTF / TEXES	spectroscopy to map stratospheric polar auroral regions.	scheduled for TEXES block: April 27 – May 6.
mid IR	Kostiuk	HIPWAC	ultra high-resolution spectroscopy of stratospheric emission in polar regions	scheduled in HIPWAC block at the IRTF: April 18-21

Post-JOI observations

	Start time (VIT4) Poor conditions		ditions	Clear conditions	
orbit00	2016-07-04T19:19:00	2:49	169	0:19	19
orbit01	2016-08-27T09:03:00	0:10	10	0:00	0
orbit02	2016-10-19T11:35:00	0:12	12	0:00	0
orbit03	2016-11-02T12:40:00	1:00	60	0:00	0
orbit04	2016-11-16T10:26:00	1:51	111	0:00	0
orbit05	2016-11-30T12:01:00	2:44	164	0:18	18
orbit06	2016-12-14T07:16:00	3:38	218	1:11	71
orbit07	2016-12-28T05:06:00	4:32	272	2:04	124
orbit08	2017-01-11T06:19:59	5:25	325	2:58	178
orbit09	2017-01-25T08:01:59	6:16	376	3:50	230
orbit10	2017-02-08T03:39:59	7:06	426	4:41	281
orbit11	2017-02-22T04:11:59	7:55	475	5:31	331
orbit12	2017-03-08T02:24:59	8:43	523	6:21	381
orbit13	2017-03-22T04:08:59	9:32	572	7:10	430
orbit14	2017-04-04T22:48:59	9:38	578	7:20	440
orbit15	2017-04-18T23:48:59	10:22	622	7:20	440