

Juno UV, Optical, & IR Remote Sensing

Randy Gladstone UVS Lead

Workshop on Jupiter's Aurora Anticipating Juno's Arrival 4th July 2016 CU-LASP Boulder, CO

UVS Concept Drawing

Changes from heritage instruments (LRO-LAMP, NH-Alice, & R-Alice):

- Scan mirror added for aurora viewing during GRAV science orbits
- Detector upgraded to XDL for higher count rates
- Everything possible moved into the S/C vault for protection from radiation
- Ta shielding surrounds detector and detector electronics

UVS Characteristics & Performance

Feature	Characteristic or Performance	Driving Requirement									
Spectral Range:	70-205 nm	78-172 nm; L3-PLS-280									
Spectral Res.:	~0.4-0.6 nm (point source) ~1.0-2.6 nm (extended source)	<3 nm filled slit; L3-PLS-303									
Spatial Res.:	0.15° (180 km from 1 R _J above the aurora)) <500 km; L3-PLS-304									
Effective Area:	0.002 cm^2 @ 105 nm, 0.02 cm^2 @ 170 nm	>100 kR; L3-PLS-305									
Feature	Characteristic or Performance										
IFOV:	$0.2^{\circ} \ge 2.5^{\circ} + 0.025^{\circ} \ge 2^{\circ} + 0.2^{\circ} \ge 2.5^{\circ} \rightarrow$ "dog-bone" shape										
Field of Regard:	$360^{\circ} \ge 60^{\circ} (2 \text{ RPM \& } \pm 30^{\circ} \text{ from spin plane} \rightarrow \text{half the sky is accessible})$										
Design:	Off-Axis Primary telescope / Rowland circle mount spectrograph										
Detector Type:	Curved 2-D MCP (solar blind), Csl photocathode, cross delay-line (XDL) readout, 24 bits/event; 2048 spectral (perpendicular to slit) x 256 spatial (parallel to slit) x 32 (PHD)										
Radiation Mitigation:	Shielding (contiguous 100 mils Ta, $\sim 4\pi$ at the detector, rejects energetic electrons <3 MeV); Pulse Height Distribution (PHD) thresholding										

- 3 blocks are used to group UVS commands during operations at Jupiter:
 - Perijove, Table Uploads, & Decontamination/Calibration/Jupiter monitoring
- Scan mirror pointing and parameter table uploads allows "last minute" updates in target selection and instrument settings

	T																							
Orbi	Type			Main Oval	Io Flux Tube			Europa Flux Tube				Ganymede Flux Tube				Callis	to Flu	x Tube	•					
#		PJ Epoch	Rank	Crossings	Footprint			Footprint				Footprint				Footprint				IFT Tail				
				0100000000	FN	NN	NS	FS	FN	NN	NS	FS	FN	NN	NS	FS	FN	NN	NS	FS	FN	NN	NS	FS
(JOI	07/05/2016 02:47:38.0	0		4	4	4	4	1	1	4	4-1	4-1	1	4	4	1	1	4	4-1	4	4	4	4
	Capture	08/27/2016 12:51:20.0	0		4-1	1	4	4-1	1	1	1	1	2	2	1	1-2	1-2	2	1	1	4-1	1	4	4-1
1	PRM2	10/19/2016 18:11:07.0	0		4-1	1	1	1	4-1	1	4	4-1	4	4	3	3-4	4-1	1	2	2	4-1	1	1	1
1	PRM3	11/02/2016 17:52:29.0	0		4	4	4	4	4	4	4	4	3-4	4	3	3	3-4-1	1	2	2-1	4	4	4	4
4	MWR4	11/16/2016 16:54:46.0	2	Good	3-4	4	4	4	3-4	4	1-4	4	3	3	3	3	2-3-4	4	1	1	3-4	4	4	4
4	GRAV5	11/30/2016 15:52:21.0	4	Good	3	3	4	4	4-3	3	4	4	2-3	3	4	4-3-2	1-2	2-3	4	4	3	3	4	4
(MWR6	12/14/2016 14:49:58.0	5		3	3-2	3	3	4	4	3-4	4	4-3-4-1	2	3	3	4	4-1	3	3-4	3	3-2	3	3
	7 MWR7	12/28/2016 13:47:35.0	5	Very Good	3	3	2-3	3	3-4	4	3	3	3	3	2	3	3	3	3	3	3	3	2-3	3
5	MWR8 T	01/11/2017 13:59:37.0	2		2	2	2	2	3	3-4	3	3	3	3	2	2-3	3	3	2	2	2	2	2	2
9	MWR9	01/25/2017 12:57:12.0	2	Good	2	2	2	2	2-3	3	2	2-3-2	2-3	3	2	2	2	2	1	1-2	2	2	2	2
10) GRAV10	02/08/2017 11:54:47.0	0		1	1-2	1	1	1-2	2	3	3-2	1-2	2	2	2-1-2	1	1	1	1	1	1-2	1	1
1	GRAV11	02/22/2017 10:52:21.0	1		4-1	1	1	1	2-1	1	2	3-2	4-1	1	2	2	4	4-1	4	4	4-1	1	1	1
12	GRAV12	03/08/2017 09:12:44.0	1		3-4	4	1	1	2	2	2	2	2	2-3	1-2	2	3	3-4	3	3	3-4	4	1	1
13	GRAV13	03/22/2017 08:10:19.0	4	Good	4-3	3	4	4	2	2	1	1-2	2	2	1	1	2-3	3	3	3-2	4-3	3	4	4
14	MWR14 T	04/05/2017 07:07:53.0	2		3-4	4	3	3-4	1	1	1	1	1	1	1	1	1-2	2	2	2	3-4	4	3	3-4
1:	GRAV15	04/19/2017 06:05:27.0	2		3	3	3	3	4-1	1	1	1	4-1	1	2-1	1-4	3-4-1	1	2	2-1	3	3	3	3
10	GRAV16	05/03/2017 06:17:26.0	2		3	3	3	3	4	4	1	1-4	4	4	1	1-4	3-4	4	1	1-4	3	3	3	3
11	GRAV17	05/17/2017 05:14:57.0	1	Good	2	2	2	2	1-4-3	3-4	1	1	1-2-3	3	1	1	1-2-3	3	4	4	2	2	2	2
18	GRAV18	05/31/2017 04:12:29.0	1	Good	1-2	2	2	2	4	4-1	4	4-1	1	1	4	4-1	4-1-2	2	4	4	1-2	2	2	2
19	GRAV19	06/14/2017 03:10:03.0	1		4-1	1	1	1	4	4	4	4	4-1	1	4	4	3-4	4-1	3	3	4-1	1	1	1
20) GRAV20	06/28/2017 03:40:40.0	2		4-1	1	1	1	4	4	3	3-4	4	4	3-4	4	3-4-1	1	2	2-3-2	4-1	1	1	1
2	GRAV21	07/12/2017 02:38:12.0	3		4	4	1	1	3	3	3	3	3-4	4	4	3	2	2-3	1-2	2	4	4	1	1
22	GRAV22	07/26/2017 01:35:46.0	2	Good	4-3	3	4	4-1	2-3	3	3	3	1-2-3	3	4	4	1	1-2	1	1	4-3	3	4	4-1
23	GRAV23	08/09/2017 00:33:19.0	1		4	4	4	4	3-2	2	3	3	4	4-1-2	3-4	4	4-1	1	4	4	4	4	4	4
24	GRAV24	08/23/2017 00:08:07.0	2		3	3	3	3	3-2	2	3	3	4	4	3	3	4	4	3	3-4	3	3	3	3
2:	GRAV25	09/05/2017 23:05:44.0	3		3	3	3	3	2-3	3	2	2	3	3	3	3	3	3	3	3	3	3	3	3
20	5 GRAV26	09/19/2017 22:03:21.0	2	Good	2	2	2	2	2	2	2	2	2-3	3	2	2	2	2	2	2	2	2	2	2
27	GRAV27	10/03/2017 21:00:55.0	2	Good	1-2	2	2	2	1-2	2	1	1	1-2	2	3	3-2	1-2	2	1	1	1-2	2	2	2
28	GRAV28	10/17/2017 20:35:43.0	2		1	1	2	2-1	4-1	1	1	1	3-4-1	1	3	3	4-1	1	4	4-1	1	1	2	2-1
29	GRAV29	10/31/2017 19:33:14.0	1		4	4	1	1	1-4	4	1	1-2-1	3	3	2	2	3-4	4	4	4	4	4	1	1
30	GRAV30	11/14/2017 18:30:45.0	1		4-1-4	4	1	1	1	1-4	1	1	2	2-3	2	2	2-3	3	4	4-3	4-1-4	4	1	1
3	GRAV31	11/28/2017 17:28:16.0	1	Good	4	4	4	4	1	1	4	4-1	1-2	2	1	1	1-2	2	3	3	4	4	4	4
32	GRAV32	12/12/2017 17:02:53.0	0		4	4	4	4	4-1	1	4	4	1	1	2	2-1	4-1	1-2	2	2-3-2	4	4	4	4
33	GRAV33	12/26/2017 16:00:20.0	2		3	3-4	3	3	3-4	4	4	4	2-3-4	4-1	2	2	2-3-4	4-1	2	2	3	3-4	3	3
34	GRAV34	01/09/2018 14:57:50.0	3		2-3	3	3	3	3	3	4	4-3	2	2	1	1	1-2-3	3-4	1	1	2-3	3	3	3
3:	GKAV35	01/23/2018 13:55:18.0	1		2	2	2	2	4-3-2	2-3	4	4-3	1	2	1	1	1	1	4	4	2	2	2	2
- 30	Extra 36	02/06/2018 12:52:47.0	0		1	1	2	2	3	3	3	3-4	4-1	1	4	4-1	4	4	3	3-4	1	1	2	2

FN=Far North; NN=Near North; NS=Near South; FS=Far South

Local Time Quadrants: 1=12am-6am; 2=6am-12pm; 3=12pm-6pm; 4=6pm-12am

On "Good" auroral crossings, the S/C footprint runs along the auroral oval for a long time

7 Junce

lational Aeronautics and pace Administration

JIRAM: Jovian InfraRed Auroral Mapper

- JIRAM is an imager and spectrograph at the same time. Its heritage comes from similar instruments on other planetary space missions: Cassini, Venus Express, Dawn and Rosetta
- The spectrograph operates in the 2-5 μ m spectral range with a resolution of 9 nm
- The imager has two contiguous channels: 3.3-3.6 μm for auroras and 4.5-5.0 μm for Jupiter's thermal emission

JIRAM: Jovian InfraRed Auroral Mapper

National Aeronautics and Space Administration Goddard Space Fight Center Order Space Order Space

JIRAM will map the Northern and Southern auroras at the infrared wavelengths emitted by H_3^+ , which has strong emissions in different bands over all the JIRAM spectral range. This ion is formed at the base of the exosphere through the reaction $H_2^+ + H_2 \rightarrow H_3^+ + H$.

JIRAM will investigate auroral links between Jupiter and the Galilean satellites. Infrared auroral emissions will be observed in conjunction with ultraviolet auroral emissions measured by UVS

Both nadir and limb observations will be performed with the JIRAM spectrograph to measure the temperature and concentration of emitting H_3^+ ions

Selex ES

A Finmeccanica Company

Auroral Mapping During Orbit 4: Imaging Coverage

Auroral Mapping During Orbit 4: Spectral Coverage

JunoCam Concept

JunoCam was conceived as a small EPO camera, not fullup science instrument

- Insufficient mass, power, dollars to fly (for example) a Cassini-equivalent camera
- What science does Juno offer that is new / different from Voyager, Galileo and Cassini?
 - -> Polar Views!
- Camera was designed for optimum performance when Juno has best polar views

Science Objectives

- Investigate meteorological phenomena at the poles
- Image atmospheric features near perijove with resolution 10x better than previous missions to observe small-scale structure of storms
- Image cloudtops to provide context for data from deeper in the atmosphere from JIRAM and MWR

JunoCam Overview

- JunoCam is a fixed-mounted, fixed field of view pushframe visible camera that images in four color bands
 - Blue, green and red
 - Methane band
- Time-delayed integration is used to increase SNR to required levels (actually takes advantage of s/c spin, unlike a framing camera)
- A JunoCam image is acquired as S/C rotation sweeps the 1600 pixel, 58° wide FOV across Jupiter. Nominal swath length is 4800 pixels, but depends on actual size of Jupiter.
- JunoCam is a heritage design of the Mars Science Laboratory (MSL) rover Mars Descent Imager (MARDI) with limited modifications, built by Malin Space Science Systems

JunoCam Specs

Mass: 2.64 kg (Camera Head) 1.05 kg (Electronics) Power: 4.7 W Idle 5.9 W Imaging Size: $97 \times 99 \times 190 \text{ mm}^3$ (Camera Head) 140 $\times 224 \times 33 \text{ mm}^3$ (Electronics)

 Focal Length:
 11 mm

 FOV:
 58°

 Pixel Size:
 7.4 μm

 IFOV
 673 μrad

Jupiter's Aurora

- Every pass we will have the opportunity to image each pole, and the phase angle and orientation of the image is such that we will capture the auroral zone
- Unfortunately the calculated SNR is marginal
- We will acquire images on PJ1 to test our ability to detect the aurora
- Methane band images may indicate areas of auroral soot deposition

Cassini flyby ISS 889 nm image

