Neutral Cloud Theory: Models of Physical Chemistry of the Io Plasma Torus

Two key players in this field are Bob Smith (1946-1991) and David Barbosa (1945-2006). Re-reading these papers has made me appreciate their major contributions. We miss their brilliance.

* Key papers

GB=ground-based, DES = Don E. Shemansky, Fehot=fraction of hot electrons, Thot=temperature of hot electrons

SI=S SII=S⁺ SIII=S⁺⁺ SIV=S⁺⁺⁺ SV=S⁴⁺ OI=O OII=O⁺ OIII=O⁺⁺ OIV=O⁺⁺⁺ OV=O⁴⁺

 $NL2 = NL^2 = fluxtube content$

COREQ = COllisional and Radiative EQuilibrium

CITEP= Colorado Io Torus Emissions Package

CHIANTI = http://www.chiantidatabase.org

CHEX = charge exchange

1980 – purple colored date means also included under UV emissions bibliography

1992 - green colored date means also included under Torus Variability bibliography

Date	Paper	Atomic	Results
		Database	
1982	Shemansky, Sandel, The injection of energy into the Io plasma torus, <i>J.</i> <i>Geophys. Res., 87,</i> 219-229		Te ~ constant for 0.5 yr with short-term variations. System III variations in Te. Energy balance using primarily SIII 685A Te hotter LT= 22:30 dusk vs 10:30 dawn e- heating: ion collisional heating too slow (6-10d). Fehot <1% (Scudder 1981, Shemansky 1980)
1982	Brown, Shemansky, On the nature of SII emission from Jupiter's hot plasma torus, <i>Ap. J., 263</i> , 433-442	DES	 SII emission lines from EUV to visible indicate Te~6.7 eV – and SII minor ion to SIII >5.9 RJ (v. different to inner cold torus). Fluctuations in SII assumed to be due to variations in Te. Ionization theory suggests electrons not sole control of ionization state – hints at CHEX
1982	*Johnson, Strobel, Charge exchange in the Io torus and exosphere, <i>J.</i> <i>Geophys. Res., 87,</i> 10,385-10,393		CHEX – 25 reactions calculated. For simple model of neutrals (Smyth), ne, Te -> composition & rates. No radial transport.

1983	Brown, Shemansky, Johnson, A	DES &	Lack of detection of OIII 5007A – previous data/models show 0+/0++
	deficiency of OIII in the Io plasma torus. <i>An. L. 264</i> , 309-323	Johnson	varies from 100 to 2.4 Johnson proposes CHEX - will remove 0++ jons
			Shemansky presents model of chemistry w/diffusion but no CHEX, which is
			discussed more as a source of neutrals
1983	Smyth, Shemansky, Escape and		Uses OI detection by Brown 1981 (6300) plus torus model to produce a
	ionization of atomic oxygen from		model of the neutral cloud of O around lo's orbit.
	10, <i>Ap. J., 271</i> , 865-875		even with long diffusion time scales
			No ion chemistry – just electron temperature and density.
			No CHEX in model but recognizes potential importance.
1983	Brown, Pilcher, Strobel,	various	Summary of observations and models to date.
	Spectrophotometric studies of the		Useful reference for spectral lines and emission processes.
	Io torus, <i>Physics of the Jovian</i> Magnetosphere, Dessler (ed), CUP		
1985	Linker, Kivelson, Moreno, Walker,		Aim to explain peak of NL2 profile inward of Io's orbit. Neutral cloud
	Explanation of the inward		generated by ejection of neutrals from Io's equator at speeds>escape.
	displacement of Io's hot plasma		Assumes electron-impact ionization with life times of ~ 40 hours. Prefers S ₂ + production because easily lost via dissociative recombination
	torus and consequences for		Assumes uniform Ne and Te – probably major issue.
	375-378		Needs spike in $f(v)$ of escaping neutrals to confine peak to 5.7 RJ.
1985	*Smith, Strobel, Energy partitioning	Strobel	Model with everything! Starts from f(v) for pick-up ions and evolves
	in the lo plasma torus, <i>J. Geophys.</i>	NRL	velocity distribution. Assumes ne=2000
	<i>Res., 90,</i> 9469-9493	Jonnson	Variables: tau. O. Te
			neutral density: no~22 cm-3 only, ns~0.1 no, ns~2no
			Driven by 0+~660 cm-3 and 0++<5 cm-3
1985	Moreno, Newman, Kivelson, Ion	Johnson &	Aim to address low 0++ density with S2 rather than S02 source.
	partitioning in the hot lo torus:	Strobel,	Model not well explained but seems a 0-D (cubic-cm) model
	Influence of S2 outgassing, J.	Brown 83,	Variables: Fehot (1keV), 0, tau. Ti -> steady state
	<i>deophys. Res., 90,</i> 12003-10072		Derives S2~60% SO2, Fehot~0.05%, tau~35days
1986	Moreno, Barbosa, Mass and energy		Cold torus.
	balance in the cold lo torus, J.		Model not well explained but seems a U-D (cubic-cm) model
	Geophys. Res., 91, 8993-8997		Includes 2-step recombination that removes oxygen:
			0+ + S02 ->0(fast) + S02+ then S02+ + e> 0(fast) + S0(fast)

1987	Shemansky, Ratio of oxygen to sulfur in the Io plasma torus, <i>J.</i> <i>Geophys. Res., 92</i> , 6141-6146	DES	V1/V2 comparison. Model + data – Collisional diffusive equilibrium. O:S ~ equal. OII, SII, SIII – plus GB OI, SI – Skinner & Durrance 1986 Big changes in 833/834 collision strengths. OII/OIII dependence on Te. Argues for S(O)/S(S)~4. Includes CHEX – which removes O ⁺⁺
1987	Strobel, Energetics, luminosity, and spectroscopy of Io's torus, in Time-Variable Phenomena in the Jovian System, Belton, West, Rahe (eds) NASA SP-494		Summary of studies to date – emphasizing the energetics. Table of composition showing variations as interpretation of emissions changed from Voyager UVS onwards to Shemansky 1987.
1988	*Barbosa, Moreno, A comprehensive model of ion diffusion and charge exchange in the cold Io torus, <i>J.</i> <i>Geophys. Res., 93,</i> 823-836		 Inner cold torus. Comprehensive model is right phrase – includes electron collisions, radiative losses, CHEX, radial transport and diffusive equilibrium for latitudinal structure. Concludes SO2 can provide all neutrals, when molecular reactions included S⁺(220) S⁺⁺(340), S⁺⁺⁺(40), O⁺(800) O⁺⁺(90) for hot torus. (would be great to re-do with proper neutral kinetics & chemistry and modern atomic data)
1988	*Shemansky, Energy branching in the Io plasma torus: The failure of neutral cloud theory, <i>J. Geophys.</i> <i>Res.,</i> 93, 1773-1784	DES	To match ionic states with realistic (longer) timescales additional energy is needed over ion pick-up Smith & Strobel 1985 pointed out hot electrons – but DES argues they underestimated radiative losses Assumes maxwellians (argues that macroscopic OK) Notes that CHEX rates have energy dependence Notes that SII radiative coefficient has increased significantly Key parameter SII/SIII – states observations <1, NCT gives 10-20 depending on tau Also addresses "Pilcher & Morgan case" of Ne ~10 ⁴ v. hard to do. Concludes that additional energy either has to come from CHEX and PU near Io – OR – hot e- (except Sittler & Stobel put limits) Notes CHEX can remove O, compo similar to Smith & Stobel except for amount of OIII Fig 1 – Radiative cooling coefficients "Details of these calculations will be published at a later date" "These results are based on the latest available collision strength and electronic structure data. Details will be given in a later publications" – no ref.

1988	Smith, Bagenal, Cheng, Strobel, On the energy crisis in the Io plasma torus, <i>Geophys. Res. Lett., 15,</i> 546-	Strobel	Proposed inwardly-diffusing energetic ions supplied the additional energy to the torus. N(S)~6, N(O)~ 30, Ne~2000 cm ⁻³
1989	*McGrath, Johnson, Charge Exchange cross sections for the Io plasma torus, <i>J. Geophys. Res., 94,</i>		30 CHEX reaction cross-sections calculated vs. ion energy.
1990	Shemansky, Critical quantities for solar system science in atomic and molecular reactions, <i>AIP</i> <i>conference proceedings, 206,</i> 163		For torus quotes ionization Brown, Shemansky, CHEX Johnson 1990, McGrath & Johnson 1989. Argues that enhanced recombination rates may be needed to explain low abundance of SII
1994	*Barbosa, Neutral cloud theory of the jovian nebula: anomalous ionization effect of suprathermal electrons, <i>Ap. J., 430,</i> 376-376		Good review of work to date. NCT model from 4 to 7 RJ. CHEX from Johnson, quotes emission rates. Assumes t~68 days, 5/cc hot electrons >5.7 RJ. Argues hot electrons only contribute 10-20 of energy budget and can be fully explained with pick-up-generated ion cyclotron waves (as per Barbosa et al. 1985).
1995	Matheson, Shemansky, Chemistry and transport in the Io torus ramp, <i>Icarus</i> , submitted	COREQ	 Radial model of torus chemistry Te fixed to Sittler profile. Explored effects of rate of radial transport. Slow (60d) close to 6 RJ, moderate (20d) moderate better at 7.2 RJ. Composition – ni/Ne 6 RJ - S⁺(0.13) S⁺⁺(0.18), S⁺⁺⁺(0.02), O⁺(0.42) O⁺⁺(0.015) 7.75 RJ - S⁺(0.13) S⁺⁺(0.09), S⁺⁺⁺(0.02), O⁺(0.26) O⁺⁺(0.22)
1996	Herbert, A simple transport model for the Io plasma torus "ribbon", <i>Geophys. Res. Lett., 23</i> , 2875-2878		Location of Ribbon modeled with radial transport and pressure gradients. Uses NL ² profile to derive DLL. Seems to completely ignore role of neutral cloud.
1998	Smyth, Marconi, An explanation for the east-west asymmetry of the Io plasma torus, <i>J. Geophys. Res., 103,</i> 9091-9100		Models S+, S++ emissions – Dawn-dusk asymmetry Uses transport+Edawn-dusk+SIII+OTD+Io's orbit. Tau~25 d at 7RJ
1998	*Schreier, Eviatar, Vasyliunas, A two-dimensional model of plasma transport and chemistry in the jovian magnetosphere, <i>J. Geophys.</i> <i>Res., 103,</i> 19,901-19,913	CITEP	 Physical chemistry model (2D) based on Richardson model. Input neutral profiles, O/S~5 Calculated electron properties, ion composition, temperature. Matched to Bagenal (1994) empirical model. Required additional heating of outer torus. Preferred inward moving ring current ions as source of heating.

2001	*Lichtenberg, Thomas, Fouchet,		IR observations of S3+ combined with Voyager UVS to constrain a
	Detection of S (IV) 10.51 micron		geometrical model (using CITEP) and a neutral cloud model (based on
	emission from the Io plasma		Shemansky 1988)
	torus, J. Geophys. Res., 106,		Derives short (8 day) timescale and low production rates
	29,899-29,910		V1 and V2 conditions with change in ionization rates since Shem88.
2003	*Delamere, Bagenal, Modeling	CHIANTI	0-D cm ³ model. Solve for steady-state flow of mass and energy.
	variability of plasma conditions in		Emission rates vs. Te from CHIANTI
	the lo torus, J. Geophys. Res., 108,		Ionization – factor x2 in S->S+ in the literature
	1276		Recombination from Lichtenberg & Thomas 2001
			Sensitivity to Fehot. Tehot. O/S. S _N . tau
			V1. V2. Cassini
2002	Crusth Manageri Nations of the		
2003	Smyth, Marconi, Nature of the		10 neutral source – 5, $0 \sim 0.5$ km/s
	logenic plasma source in jupiter's		5-D neutral cloud model shaped by lonization and CHEX
	magnetosphere. I.		
	Circumplanetary distribution,		
	<i>Icarus, 166, 85-106</i>		
2004	Hill, Dessler, Longitudinal variation		SystemIII longitude variations in Ti (perp 20-45 eV, par 10-30eV) from
	of ion temperature in the Io		Brown 1995, Thomas 2001, Schneider 1997
	plasma torus, J. Geophys. Res., 109,		Uses VIT4 to derive Pederson conductance for N, S and argues pick-up
	A04206		energy controlled by ionospheric conductance (SigN+SigS) ²
2004	Thomas, Bagenal, Hill, Wilson, The		Review of observations and models of both neutral clouds and torus.
	Io neutral clouds and plasma		Extensive discussion on radial transport.
	torus, in Jupiter, Bagenal,		
	Dowling, McKinnon (eds), CUP		
2004	Delamere, Steffl, Bagenal, Modeling	CHIANTI	Dust measurements show x1000 increase in flux from Io in Sept 2000
	temporal variability of plasma		Cassini UVIS sees decrease from Oct 2000 through Mar 2001.
	conditions in the Io torus during		Modeled with 2003 model with factor of 3.5 increase in neutral production
	the Cassini era, J. Geophys. Res.,		rate with time-scale of 22.5 days
2005	*Delamere, Bagenal, Steffl, Radial	CHIANTI	Modeled UVIS composition vs. radial distance with 1-D model (latitudinally
	variations in the Io plasma torus	4.2	averaged) with proscribed neutral cloud profile. Solves for conservation
	during the Cassini era, J. Geophys.		of mass & energy
	Res., 110, A12223		Parameters: S_N , O/S , tau, Fehot, Tehot,
			Explores sensitivity to transport, neutral source, Fehot.

2005	Smyth, Marconi, Nature of the		Near Io – neutral clouds of O, S – from exobase to \sim 20 RIo.
	iogenic plasma source in Jupiter's		Limited electrodynamics.
	magnetosphere. II. Near-Io		Ionization & CHEX. Inner vs. outer region – see Fig 10.
	distribution, <i>Icarus, 176,</i> 138-154		Net mass-loading 111 kg/s
2007	Wu, Hill, Wolf, Spiro, Numerical simulation of fine structure in the Io plasma torus produced by the centrifugal interchange instability, J. Geophys. Res., 112,		 Rice Convection Model for IPT - models radial transport with flux-tube interchange. No chemistry. Found ~1° longitude "fingers". Outward transport faster than inward.
2008	Steffl. Bagenal. Stewart. Cassini UVIS	CHIANTI	System III &IV.
2008	observations of the lo plasma	4.2	Fit functions to system III and IV variations – modulation of electrons
	torus. IV: Modeling temporal and		Table of production and loss lifetimes for different species via different
	azimuthal variability, Icarus, 194,		processes
	153-165		Role of hot electrons
2008	Herbert, F., N. M. Schneider, and A. J. Dessler, "New description of Io's cold plasma torus", J. Geophys. Res., 113		
2011	Smyth, Peterson, Marconi, A	CHIANTI	Attempts to match all Voyager and Galileo data with a 4-D model that
	consistent understanding of the	5.2.1	includes Io phase, SIII longitude, R, Latitude
	consistent understanding of the ribbon structure for the Io plasma	5.2.1	includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions
	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB,	5.2.1	includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs:
	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys.</i>	5.2.1	includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager
	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys.</i> <i>Res.</i> , <i>116</i> , A07205	5.2.1	includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager
2011	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys.</i> <i>Res., 116,</i> A07205 Hess, Delamere, Bagenal, Schneider,	5.2.1	includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager Longitude modulation of emissions.
2011	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys.</i> <i>Res., 116,</i> A07205 Hess, Delamere, Bagenal, Schneider, Steffl, Longitudinal modulation of hot electrons in the Io plasma	5.2.1	includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager Longitude modulation of emissions. Argues for magnetic field control.
2011	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys.</i> <i>Res., 116,</i> A07205 Hess, Delamere, Bagenal, Schneider, Steffl, Longitudinal modulation of hot electrons in the Io plasma torus <i>L Geophys Res.</i> 116	5.2.1	includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager Longitude modulation of emissions. Argues for magnetic field control. Says hot electrons come from Alfvenic currents. Power from inward-moving fluxtubes is not modulated by longitude
2011	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys.</i> <i>Res., 116,</i> A07205 Hess, Delamere, Bagenal, Schneider, Steffl, Longitudinal modulation of hot electrons in the Io plasma torus, <i>J. Geophys. Res., 116,</i> A11215	5.2.1	includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager Longitude modulation of emissions. Argues for magnetic field control. Says hot electrons come from Alfvenic currents. Power from inward-moving fluxtubes is not modulated by longitude. To account for the beating between SystemIII. SystemIV :
2011	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys.</i> <i>Res., 116,</i> A07205 Hess, Delamere, Bagenal, Schneider, Steffl, Longitudinal modulation of hot electrons in the Io plasma torus, <i>J. Geophys. Res., 116,</i> A11215	5.2.1	 includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager Longitude modulation of emissions. Argues for magnetic field control. Says hot electrons come from Alfvenic currents. Power from inward-moving fluxtubes is not modulated by longitude. To account for the beating between SystemIII, SystemIV : SystemIV controls the inward motion of empty fluxtubes.
2011	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys.</i> <i>Res., 116,</i> A07205 Hess, Delamere, Bagenal, Schneider, Steffl, Longitudinal modulation of hot electrons in the Io plasma torus, <i>J. Geophys. Res., 116,</i> A11215	5.2.1	 includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager Longitude modulation of emissions. Argues for magnetic field control. Says hot electrons come from Alfvenic currents. Power from inward-moving fluxtubes is not modulated by longitude. To account for the beating between SystemIII, SystemIV : SystemIV controls the inward motion of empty fluxtubes, System III controls efficiency of power transfer to the electrons (via
2011	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys.</i> <i>Res., 116,</i> A07205 Hess, Delamere, Bagenal, Schneider, Steffl, Longitudinal modulation of hot electrons in the Io plasma torus, <i>J. Geophys. Res., 116,</i> A11215	5.2.1	 includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager Longitude modulation of emissions. Argues for magnetic field control. Says hot electrons come from Alfvenic currents. Power from inward-moving fluxtubes is not modulated by longitude. To account for the beating between SystemIII, SystemIV : SystemIV controls the inward motion of empty fluxtubes, System III controls efficiency of power transfer to the electrons (via magnetic field variations at the foot of the fluxtube in the ionosphere).
2011	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys.</i> <i>Res., 116,</i> A07205 Hess, Delamere, Bagenal, Schneider, Steffl, Longitudinal modulation of hot electrons in the Io plasma torus, <i>J. Geophys. Res., 116,</i> A11215 Grieve et al., Electron-impact	5.2.1 CHIANTI	 includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager Longitude modulation of emissions. Argues for magnetic field control. Says hot electrons come from Alfvenic currents. Power from inward-moving fluxtubes is not modulated by longitude. To account for the beating between SystemIII, SystemIV : SystemIV controls the inward motion of empty fluxtubes, System III controls efficiency of power transfer to the electrons (via magnetic field variations at the foot of the fluxtube in the ionosphere). Calculations of collision strengths and excitation of lines of SIII at various
2011 2014	consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys.</i> <i>Res., 116,</i> A07205 Hess, Delamere, Bagenal, Schneider, Steffl, Longitudinal modulation of hot electrons in the Io plasma torus, <i>J. Geophys. Res., 116,</i> A11215 Grieve et al., Electron-impact excitation collision strengths and	5.2.1 CHIANTI 7.1	 includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager Longitude modulation of emissions. Argues for magnetic field control. Says hot electrons come from Alfvenic currents. Power from inward-moving fluxtubes is not modulated by longitude. To account for the beating between SystemIII, SystemIV : SystemIV controls the inward motion of empty fluxtubes, System III controls efficiency of power transfer to the electrons (via magnetic field variations at the foot of the fluxtube in the ionosphere). Calculations of collision strengths and excitation of lines of SIII at various regions in the EUV
2011 2014	 consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys. Res., 116,</i> A07205 Hess, Delamere, Bagenal, Schneider, Steffl, Longitudinal modulation of hot electrons in the Io plasma torus, <i>J. Geophys. Res., 116,</i> A11215 Grieve et al., Electron-impact excitation collision strengths and theoretical line intensities for 	5.2.1 CHIANTI 7.1	 includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager Longitude modulation of emissions. Argues for magnetic field control. Says hot electrons come from Alfvenic currents. Power from inward-moving fluxtubes is not modulated by longitude. To account for the beating between SystemIII, SystemIV : SystemIV controls the inward motion of empty fluxtubes, System III controls efficiency of power transfer to the electrons (via magnetic field variations at the foot of the fluxtube in the ionosphere). Calculations of collision strengths and excitation of lines of SIII at various regions in the EUV Incorporated into CHIANTI database
2011 2014	 consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 GB, and Galileo J0 epochs, <i>J. Geophys. Res., 116,</i> A07205 Hess, Delamere, Bagenal, Schneider, Steffl, Longitudinal modulation of hot electrons in the Io plasma torus, <i>J. Geophys. Res., 116,</i> A11215 Grieve et al., Electron-impact excitation collision strengths and theoretical line intensities for transitions in SIII, <i>Ap. J., 780,</i> 110 	5.2.1 CHIANTI 7.1	 includes Io phase, SIII longitude, R, Latitude Emphasis on S+ emissions Argues for big changes in Inner/Outer torus ratios between epochs: 1991 (GB epoch) outer/inner densities ~1.3 x Voyager 1995 (GLL) outer/inner densities ~3.9 x Voyager Longitude modulation of emissions. Argues for magnetic field control. Says hot electrons come from Alfvenic currents. Power from inward-moving fluxtubes is not modulated by longitude. To account for the beating between SystemIII, SystemIV : SystemIV controls the inward motion of empty fluxtubes, System III controls efficiency of power transfer to the electrons (via magnetic field variations at the foot of the fluxtube in the ionosphere). Calculations of collision strengths and excitation of lines of SIII at various regions in the EUV Incorporated into CHIANTI database Comparison with line-ratios from Feldman in FUSE & EUVE observations.

2016	Copper, Delamere, Overcast-Howe, Modeling physical chemistry of the Io plasma torus in two		Combines Steffl 2008 (azimuthal) with Delamere 2005 (radial) variations Uses Bagenal 1994 for outer boundary conditions. Needs hot (270 eV) electrons (fehot~0.2%) modulated with System III&IV
	dimensions, J. Geophys. Res., 121		Transport 6-10 RJ ~43Days. Needs lower Pederson conductance to produce subcorotation of ~1 km/s
2017	Yoshioka, K., et al., Radial variation of sulfur and oxygen ions in the Io plasma torus as deduced from remote observations by Hisaki, <i>J.</i> <i>Geophys. Res.</i> , 122, 2999-3012,	CHIANTI 8.0	Hisaki data 219 min in Nov 2013 – radial profiles of emissions Radial variations in ion species and electron properties modeled with line- of-sight integration Composition similar to Voyager (Nerney) and Cassini (Steffl) Radial transport ~30 days

* Key papers

GB=ground-based, DES = Don E. Shemansky, Fehot=fraction of hot electrons, Thot=temperature of hot electrons

SI=S SII=S⁺ SIII=S⁺⁺ SIV=S⁺⁺⁺ SV=S⁴⁺ OI=O OII=O⁺ OIII=O⁺⁺ OIV=O⁺⁺⁺ OV=O⁴⁺

 $NL2 = NL^2 = fluxtube content$

COREQ = COllisional and Radiative EQuilibrium

CITEP= Colorado Io Torus Emissions Package

CHIANTI = http://www.chiantidatabase.org

CHEX = charge exchange

1980 – purple colored date means also included under UV emissions bibliography

1992 – green colored date means also included under Torus Variability bibliography