29-Jan-18 Ground-based Observations of the Io Plasma Torus & Neutral Clouds

1982 – green colored date means also included under UV emissions bibliography

1982 – blue colored date means also included under physical chemistry model bibliography

1982 – red colored date means also included in torus variability bibliography

Highlighted papers are useful overview/review/summary

Date	Authors, title, reference	Summary
1974	Brown, R.A., F.H. Chaffee, High-resolution spectra of sodium emission from Io, <i>Ap. J.</i> , <i>187</i> , L125	Na D1,2 lines – D2/21 shows optically thick
1974	Mekler, Eviatar, Spectroscopic observations of Io, Ap. J., 193, L151	Detection of Na, also claims Ca
1974	McElroy, Yung, Brown, Sodium emission from Io: Implications, <i>Ap. J., 187,</i> L127	Explains Na D1,2 lines as surface covered in ammonia ice!
1974	Trafton et al., The spatial extent of sodium emission around Io, <i>Ap. J., 190</i> , L85	Sodium emission extends around Jupiter at Io's orbit, but not all way around.
1974	Matson, Johnson, Fanale, Sodium D-line emission from Io: Sputtering and resonant scattering hypothesis	Model of sputtering of surface, cloud ejection and resonant scattering of sunlight.
1975	Parkinson, Excitation of sodium D-line emission observed in the vicinity of Io, J. Atm. Sci., 32, 630	Observation of D-lines at Kitt Peak. Observations constrain neutral cloud.
1975	Bergstralh, Matson, Johnson, Sodium D-lin emission from Io: synoptic observations from Table Mountain Observatory, <i>Ap. J.</i> <i>Lett., 196</i> , L131	7-week observing of sodium emission shows strong correlation with Io's position, distributed in a partial toroid, more leading than trailing. D-line does not depend on solar phase angle.
1975	Macy, Trafton, Io's sodium emission cloud, Icarus, 25, 432	Argues for resonant scattering excitation mechanism. Interprets spatial distribution of at least 1/5 of orbital circumference
1975	Macy, Trafton, A model for Io's atmosphere and sodium cloud, <i>Ap. J., 200</i> , 510	Sputtering source of atmosphere and escaping sodium. Resonant scattering of sunlight causes sodium emission.
1975	Trafton, L., High-resolution spectra of Io's sodium emission, Ap. J., 202, L107	Shape of emission profile varies with orbital phase of Io. Width suggests v~18 km/s.

1975	Trafton, Macy, An oscillating asymmetry of Io's sodium emission cloud, <i>Ap. J., 202</i> , L155	Reports variation in sodium emission with Io's magnetic longitude. Argues cause is variations in sputtering by trapped charged particles.
1975	Carlson, Matson, Johnson, Electron impact ionization of Io's sodium emission cloud, <i>Gephys. Res. Lett., 2,</i> 469	Model of sodium cloud assuming uniform source and electron impact ionization as loss process. Assume plasma densities of 30-200 cm^-3
1975	Brown, Goody, Murcray, Chaffee, Further studies of line emission from Io, <i>Ap. J.,</i> <i>200</i> , L49	Defines region A = disk, region B = 10s arcsec from Io, region C = extended neutral cloud Reports column abundance for region B
1975	Ershkovich, Mekler, Jovian sodium cloud geometry, Astrophs. Space Sci, 38, L1	Models sodium cloud (4-10 RJ). Assumes v~2.3 km/s escaping from Io. Estimates lifetime of 10^5 s
1975	Trafton, Detection of potassium cloud near Io, Nature, 258, 690	First detection of potassium. Assumed sputtering source.
1976	Fang, Smyth, McElroy, The spatial distribution of long lived gas clouds emitted by satellites in the outer solar system, <i>Planet. Space Sci., 24,</i> 577	Generalized description of neutral clouds coming from satellites in orbit around giant planets.
1976	Mekler, Eviatar, Coroniti, Sodium in the jovian magnetosphere, Astrophys. Space Sci., 40, 63	Map of sodium cloud from 4 to 10 RJ Argues for sputtering source
1976	Eviatar, Mekler, Coroniti, Jovian sodium plasma, Ap. J., 205, 622	Model of production, transport, loss. Discussion of sodium atoms reaching out into the solar wind.
1976	Wehinger, Wyckoff, Fohlich, Mapping of the sodium emission associated with Io and Jupiter, <i>Icarus, 27,</i> 425	Mapping sodium out to 23 RJ
1976	Kupo, Mekler, Eviatar, Detection of ionized sulfur in the jovian magnetosphere, <i>Ap. J.,</i> <i>205,</i> L51	Ionized sulfur – SII – disk around Io's orbit. Electron impact excited, n<<10^4 cm^-3 c.f. Pioneer 10 estimate from Frank's plasma data of ~100
1976	Brown, R.A., A model of Jupiter's sulfur nebula, Ap. J., 206, L179	Spectral analysis puts limits on electron density and temperature. Argues for higher density, lower temperature than claimed by Frank from Pioneer 10 plasma data

1977	Mekler, Eviatar, Kupo, Jovian sulfur nebula, JGR, 82, 2809	Observations modeled with Te~10eV, Ne~500 cm^-3, of which 24% is sulfur. Argues against Frank's Pioneer 10 in situ data (Ne~100 cm^-3) Long recombination times. Suggests radial diffusion timescale ~90 days.
1977	Bergstralh, et al., Sodium D-line emission from Io: A second year of synoptic observations from Table Mountain Observatory, <i>Ap. J., 211</i> , L51	1974 and 1975 apparitions similar Some dawn-dusk asymmetry
1977	Trafton, Periodic variations in Io's sodium and potassium clouds, <i>Ap. J., 215</i> , 960	17 nights of observing in 1975. Shows magnetic latitudinal and longitudinal variations. Potassium similar structure to sodium, but weaker.
1977	Trafton, Macy, Io's sodium emission profiles: variations due to Io's phase and magnetic latitude, <i>Ap. J., 215,</i> 971	Strong, persistent variations in emission wavelength with orbital phase of Io.
1977	Smyth, McElroy, The sodium and hydrogen gas cloud of Io, <i>Planet. Space Sci., 25,</i> 415	Numerical modeling of atoms ejected from Io, following their path through the system under Jupiter's gravity.
1977	Goody, Apt, Observations of the sodium emission from Jupiter, Region C, <i>Planet.</i> <i>Space Sci., 25,</i> 603	Claims the Na emission beyond about 9 RJ is terrestrial noise.
1977	Münch, Bergstralh, Io: Morphology of its sodium emission region, Astronomical society of the Pacific, 89:232-237	Compares GB observations of Na and SII with electron properties from Pioneer – and has hard time reconciling with low densities and protons.
1978	Trafton, Macy, On the distribution of sodium in the vicinity of Io, <i>Icarus, 33</i> , 322	Further study of Io phase and East-West effects
1978	Matson, Goldberg, Johnson, Carlson, Images of Io's sodium cloud, <i>Science, 199,</i> 531	Images of the sodium cloud showing "banana" shape of cloud. More atoms on leading than trailing side of Io. Models with non-uniform source direction
1978	Murcray, Goody, Astronomical monochromatic imaging as applied to the Io sodium cloud, <i>Applied Optics</i> , <i>17</i> , 3117	Describes method of imaging the sodium D-lines to get images of the neutral cloud.
1978	Murcray, Goody, Pictures of the Io sodium cloud, <i>Ap. J., 226</i> , 327	Images of the sodium cloud showing steady-state shape of cloud which changes with viewing as well as magnetic field geometry.

1978	Carlson, Matson, Johnson, Bergstralh, Sodium D-line emission from Io: Comparison of observed and theoretical line profiles, <i>Ap. J., 223</i> , 1082	Line profiles of emission consistent with escape velocity and from leading hemisphere
1978	Mekler, Eviatar, Thermal Electron density in the jovian magnetosphere, JGR, 83, 5679	Distant sodium cloud observed and shows variability. Argues this variability due to changes in the thermal electron population.
1978	Smyth, McElroy, Io's sodium cloud: comparison of models and 2-dimentional images, <i>Ap. J., 226,</i> 336	Further particle tracing modeling of the sodium cloud that are then compared with images. Concluded the effective life time is 15-20 hours before ionization.
1979	Smyth, Io's sodium cloud: Explanation of the East-West asymmetries, Ap. J., 234, 1148	Explains the East-West asymmetry of the sodium cloud via radiation pressure on the atoms.
1979	Pilcher, Schempp, Jovian sodium emission from region C, <i>Icarus, 38,</i> 1	Sodium D-lines observed out to 35 RJ from Jupiter.
1979	Eviatar, Siscoe, Mekler, Temperature anisotropy of the Jovian sulfur nebula, <i>Icarus, 39,</i> 450	GB observations of SII suggest Tpar>>Tperp~3eV. Propose model of plasma (dominated by protons & e-) that allows parallel heating.
1979	Mekler, Eviatar, Siscoe, Discontinuities in jovian Sulphur plasma, <i>MNRAS, 189,</i> 15- 17	Discusses difficulties in reconciling radial distribution of SII from ground-based observations with in situ measurements of plasma from Pioneer.
1980	Cummings, Dessler, Hill, Latitudinal Oscillations of Plasma within the Io Torus, JGR, 85, A5, 2108	Calculates equilibrium latitude location of peak density for range of Tperp. High Tperp -> Mag Eq., low Tperp to Cent. Eq.
1980	Pilcher, Images of Jupiter's sulfur ring, Science, 207, 188	SII torus observed April 1979. Thin inner torus one night, thick ribbon another.
1980	Pilcher, Morgan, Distribution of SII emission around Jupiter, <i>Ap. J.</i> , 238, 375	Ring of SII emission 4-7 RJ with thickness +-0.7 RJ Variable with longitude. No variation with Io phase
1980	Trauger, Munch, Roesler, A study of the jovian [S II] nebula at high spectral resolution, <i>Ap. J., 236</i> , 1035-1080	Plots of SII vs. R, lat, long. Scaleheight~0.13 RJ giving T~1.7 eV Ne~2000 cm^-3

1980	Macy, Trafton, The distribution of sodium in Io's cloud: Implications, <i>Icarus, 41,</i> 131	Particle-tracing model of sodium atoms ejected from Io (inside hemisphere), followed to ~30 RJ. Distant cloud losses by ionization.
1980	Trafton, The jovian SII torus: Its longitudinal asymmetry, <i>Icarus, 42,</i> 111	Plots of SII vs. R, lat, long, in weird plotting technique Te=10^4.4 Ne~20,000 cm^-3 (no wonder m'sphere people ignored such papers)
1980	Goldberg, Mekler, Carlson, Johnson, Matson, Io's sodium emission cloud and the Voyager 1 encounter, <i>Icarus, 44</i> , 305	Review of Na observations from GB telescopes.
1980	Trafton, An explanation for the alternating North-South asymmetry of Io's sodium cloud, <i>Icarus, 44,</i> 318	Explains longitudinal asymmetry of the Na cloud by ionization by plasma torus tilted by magnetic field wrt neutral cloud in Io's orbital plane. Post-Voyager
1980	Mekler, Eviatar, Time analysis of Volcanic activity on Io by means of plasma observations, <i>JGR, 85,</i> A3, 1307	Model of Io volcanic activity based on 15 volcanoes and binomial distribution. Assumes low activity during Pioneer (compared with Voyager).
1981	Brown, R.A. and N.M. Schneider, "Sodium Remote from Io", <i>Icarus 48</i> , 519-535	Distant (10-20 RJ) sodium - fast, up to 100 km/s. Suggest charge exchange source.
1981	Trafton, A survey of Io's potassium cloud, <i>Ap. J., 247</i> , 1125	Similar spatial variations as sodium – but noisier.
1981	Brown, R.A., The Jupiter hot plasma torus: Observed electron temperature and energy flows, <i>Ap. J., 244</i> 1072	Detection of OI 6300 and SIII 6312 Te~4 eV plus few % hot electrons T(SIII)~90 eV
1981	Brown, R.A., W-H. Ip, Atomic clouds as distributed sources for the Io plasma torus, <i>Science, 213,</i> 1493	High resolution spectrum of SII shows both cold (16 eV) and hot (360eV – but not well determined).
1981	Brown, R.A., Heavy ions in Jupiter's environment, <i>Adv. Space Res., 1</i> , 75	Review of optical (cold) and warm (UV) torus and flow of mass and energy through the system.
1981	Haff, Watson, Yung, Sputter ejection of matter from Io, <i>JGR, 86</i> , A8, 6933	Claims source of plasma is sputtering of surface by pick-up S+ and O+ ions.
1982	Brown, R.A. The probability distribution of S+ gyrospeeds in the Io torus, <i>JGR</i> , <i>87</i> , 230	Tperp from high resolution optical observations of S+ emission with average Tperp of 60 eV – though spatially smeared and likely the distribution is not Maxwellian.

1982	Brown, Shemansky, On the nature of SII emission from Jupiter's hot plasma torus, <i>Ap. J., 263,</i> 433	Compares GB optical and Voyager UV emission from S+ ions. Shows compatible Te~7eV at ~5.9 RJ. Variable SII/SIII suggested to be due to charge exchange reactions.
1982	Morgan, J.S., C.B. Pilcher, Plasma characteristics of the Io torus, <i>Ap. J., 253</i> , 406	Observation of both SII and OII emissions – 2 lines each. Allows determination of electron density and temperature – roughly consistent with Voyager Longitude variations in SII, less clear for OII 3 spectra suggest v. cold, dense plasma
1982	Goertz, Ip, On the structure of the Io torus, <i>Planet. Space. Sci, 30</i> , 9, 855	Claims importance of charge exchange reactions as source of fresh ions from exosphere of Io. Modeling of neutral banana cloud.
1982	Roesler, Oliversen, Scherb, Lattis, Williams, York, Jenkins, Lowrance, Zucchino, Long, Farby-Perot/CCD observations of [S III] and [S II] emissions from the Jupiter Plasma Torus, <i>Ap. J</i> , 259, 900	Both SII and SIII from GB optical emissions. Vertical scaleheight gives $T(S+) \sim 5 \text{ eV}$ and $T(S++) \sim 19 \text{ to } 55 \text{ eV}$ Emission line profiles gives Tperp $(S++) \sim 27-120 \text{ eV}$
1983	Brown, Pilcher, Strobel, Spectrophotometric studies of the Io torus, in <i>Physics of the Jovian</i> <i>Magnetosphere</i> , Dessler (ed), Cambridge University Press	Review of physical processes of production, loss and emission of neutral and ionized species – both UV and optical
1983	Smyth, Io's sodium cloud: Explanation of the East-West Asymmetries II, <i>Ap. J., 264</i> , 708-725	Ballistic trajectories of escaping sodium atoms, shaped by ionization, radiation of scattered sunlight depending on motion relative to Sun, discusses motion of Io in the plasma torus.
1983	Brown, Shemansky, Johnson, A deficiency of OIII in the Io plasma torus, <i>Ap. J., 264</i> , 309	Lack of OIII optical emission suggests low density – but lower than suggested by Voyager UV CHEX decreases OIII but not enough. Otherwise need to decrease fraction of hot electrons or transport time. Low limit on Cl III
1983	Brown, Observed departure of the Io plasma torus from rigid co-rotation with Jupiter, <i>Ap. J., 268,</i> L47	Line shift suggests 4-6% co-rotation lag at 5.9 RJ
1983	Smyth, Shemansky, Escape and ionization of atomic oxygen from Io, Ap. J, 271, 865	Modeling of production from Io, constrained by UV emissions close to Io. Just OI~17 kg/s. Add sulfur and CHEX increases mass- loading. Diffusive timescale~200 days. Total mass loss from Io ~270 kg/s. Total plasma production ~ 150 kg/s

1984	Goertz, Ip, A dawn-to-dusk electric field in the jovian magnetosphere, Planet. Space Sci., 32, 179-185	Detailed explanation of basic idea set out in Ip & Goertz (1983) and in Barbosa & Kivelson (1983) of global E-W electric field produced by ejection of material down the tail.
1984	Pilcher, Smyth, Combi, Fertel, Io's sodium directional features: evidence for a magnetospheric-wind-driven gas escape mechanism, <i>Ap. J., 287</i> , 427	Detection of sodium jets coming from Io Suggests due to CHEX during interaction
1984	Trauger, The jovian nebula: A post-Voyager perspective, <i>Science, 226</i> , 337-341	With insight of Voyager, SII and SIII images converted into radial profiles of S+ and S++ densities – cold and hot components
1984	Roesler, Scherb, Oliversen, Periodic intensity variation in SIII 9531A emission from the Jupiter plasma torus, <i>GRL</i> , <i>11</i> , 128-130	43 Jupiter rotations of SIII emission shows periodicity at 2.8% slower than corotation.First report of what later was called System IV.
1984	Goldberg, Garneau, LaVoie, Io's Sodium Cloud, <i>Science, 226,</i> 4674	 2-D images from 1981 of Na cloud (claims first 2-D images – but previously reported by Murcray in 1978. Variations with Io phase, longitude, look direction.
1984	Sieveka, Johnson, Ejection of atoms and molecules from Io by plasma-ion impact, <i>Ap. J, 287,</i> 418	Ranges of escape speed of neutral material via different processes.
1985	Pilcher, Morgan, Magnetic longitude variations in the Io torus, <i>Adv. Space Res.</i> <i>5</i> , 337	Variations in optical properties of SII and SIII emission with longitude Argues for local production causing longitudinal variations
1985	Pilcher, Fertel, Morgan, SII images of the Io torus, <i>Ap. J., 291</i> , 377	System III longitude effect East-West effect
1985	Morgan, Temporal and spatial variations in the Io torus, <i>Icarus, 62,</i> 389	1981 observations of 2 lines of SII and OII and 1 line of SIII East-West effect Longitude effect Line ratios of SII suggest increase in Ne over 4 months

1985	Morgan, Models of the Io torus, <i>Icarus, 63</i> , 243	 Models constructed from optical observations – both spectroscopic and images (from Oliversen) and compared with Voyager. Indicates differences: 1981 1.5-2 times denser >5.7 RJ, SII temperatures half that measured by Voyager, OII mixing ratio lower – dropping inside 6 RJ. Factor 2 variations in intensity with longitude East-West asymmetry consistent with B&K and G&I theory. Notes difficulty in measuring OII line ratios.
1986	Moreno, Barbosa, Mass and energy balance of the cold Io torus, JGR, 91, 8993-8997	Physical chemistry model of the cold inner torus starting with SO2+ ions. Points out issue with NL2 profile, DLL, radiation vs. diffusion times. Notes important CHEX reactions.
1986	Summers, Siscoe, A model of the Io plasma ribbon, Icarus, 67, 520-524	Models the Ribbon as a localized source region.
1987	Schneider, Hunten, Wells, Trafton, "Eclipse Observations of Io's Sodium Atmosphere", <i>Science 238</i> , 55-58	1985 Gal sats eclipse – 2 give depth of sodium cloud Column abundance ~3 x 10^12 cm-2, dropping off as 1/R^2
1987	Smyth, Combi, Correlating east-west symmetries in the jovian magnetosphere and the Io sodium cloud, <i>GRL</i> , <i>14</i> , 973- 976	Modeling effects of E-W offset and longitudinal variations in torus on the Na cloud models.
1987	Eviatar, Volcanic control of the Io Atmosphere and neutral and plasma Torus, <i>JGR, 92</i> , A8, 8800	Early model of plasma interaction producing torus production at Io. Depends on model assumptions about the atmosphere, the incoming plasma and the reactions.
1987	Ballester, Moos, Feldman, Strobel, Summers, Bertaux, Skinner, Festou, Lieske, Detection of neutral oxygen and sulfur emissions near Io using IUE, <i>Ap. J.,</i> <i>319,</i> L33	Comparison of UV emissions when Io in/out of IUE FOV. Multiple overlapping lines make separation of species difficult. Suggests extended emissions coming from interaction of electrons associated with ionosphere and/or plasma interaction impacting the SO2 atmosphere.
1988	Smyth, Combi, A general model for Io's neutral gas clouds: I Mathematical description, <i>Ap. J. Supp., 66,</i> 397	Description of method for doing neutral atom ballistic trajectories.
1988	Smyth, Combi, A general model for Io's neutral gas clouds: II. Applications to the sodium cloud, <i>Ap. J, 328,</i> 888	Model of the Na cloud that includes E-W variations, Io phase effect, System III longitude

1989	Summers, Strobel, Yung, Trauger, Mills, The structure of Io's thermal corona and implications for atmospheric escape, <i>Ap.</i> <i>J., 343,</i> 468	 Modeling of thermal and non-thermal escape from Io's atmosphere. Concludes that atmospheric sputtering is high – requires deflection of plasma flow around Io O-dominated corona, T~1000K. Exobase/plasma interaction 1.5 RIo Na mixing ratio ~ 10⁻³
1990	Mendillo, Baumgardner, Flynn, Hughes, The extended sodium nebula of Jupiter, <i>Nature, 348,</i> 312	Sodium cloud detected out to nearly 300 RJ The Mendillosphere!
1991	Schneider., Hunten, Wells, Schultz, Fink, The Structure of Io's Corona, Ap. J. 368, 298-315	Details of mutual events and derivation of column abundances
1991	Schneider., Trauger, Wilson, Brown, Evans, Shemansky, Molecular Origin of Io's Fast Sodium, <i>Science, 253,</i> 1394-1397	Explains the fast jets with dissociative recombination of sodium molecular ion
1991	Smyth, Combi, The sodium zenocorona, J. Geophys. Res., 96, 22,711	Particle tracing modeling of both banana cloud and the extended Mendillosphere (>200 RJ).
1991	Oliversen, Scherb, Roesler, The Io sulfur torus in 1981, <i>Icarus, 93</i> , 53-62	SII and SIII. Inner, cold torus vs. warm outer torus.
1991	Yang, Dessler, Sandel, Is System IV Independent of System III? <i>JGR, 96,</i> A3, 3819	Tests idea that System IV and III are beat frequencies – concludes that they are separate periodicities.
1992	Thomas, N., Optical observations of Io's neutral clouds and plasma torus, <i>Surveys</i> <i>Geophys., 13</i> , 91-164	Review of optical observations – both neutrals and ions Pre-Voyager, Voyager (in situ and UV), emission model, mass & energy flow, Good diagrams.
1992	Mendillo, Flynn, Baumgardner, Imaging observations of Jupiter's sodium magnetonebula duing the Ulysses encounter, <i>Science, 257</i> , 1510	Mendillosphere Nov-Dec 1989, Jan 1990, Feb 1992. Brightness at 100 RJ ranges from 75 to 25 to 10 R. Sodium source drops correspondingly.
1992	Cremonese, Thomas, Barbieri, Pernechele, High resolution spectra of Io's neutral sodium cloud, <i>Astron. Astrophys. 256,</i> 286	Both fast and slow sodium observed.3 Mapped to show both Io-phase and longitudinal effects. Fast neutral production of 2-5 x 10^25 atoms/s derived.
1992	Jockers, Thomas, Bonev, Ifanova, Shkodrov, Observations of Io's sodium cloud and torus, <i>Adv. Space Res. 12</i> , 347	New observing system. Similar results to previous.

1992	Smyth, Neutral cloud distribution in the Jovian System, <i>Adv. Space Res., 12,</i> 337- 346	Nice diagram of reactions between Io and the torus. Shows reactions and emissions. Summary of features and explanations
1992	Yang, Wolf, Spiro, Dessler, Numerical simulation of plasma transport driven by the Io torus, <i>GRL, 19,</i> 10957	Rice convection model produces fingers of outward-moving plasma. System III variation imposed due to variation in B with longitude.
1993	Thomas, Detection of [OIII] 5007 emission from the Io plasma torus, <i>Ap. J., 414</i> , L41- L44	First detection of OIII (5007) emission 5.5 – 5.8 RJ. Higher intensity than reported. Ne (from SII line ratio) 2-3000. Te 2-3 eV O2+/Ne~3.4%
1993	Rauer, Bonev, Jockers, Thomas, Low- resolution spectra of the Io plasma torus 2 doys after the Ulysses, <i>Planet. Space</i> <i>Sci., 41,</i> 1021	SII and SIII observed during Ulysses (10-11 Feb 1992). Higher density than Voyager. Local time & System III variations.
1993	Thomas, The variability of the Io plasma torus, <i>JGR, 98,</i> 18,737-18,750	Review of variability of the IPT. System III, IV East-West – local time, Io-phase Problem is comparison of UV and optical with v. different knowledge of excitation physics as well as dependence on fraction of hot electrons
1994	Flynn, Mendillo, Baumgardner, The jovian sodium nebula: Two years of ground-based observations, <i>JGR</i> , 99, 8403	+-500 RJ sodium nebula monitored late 1989 to early 1992. R^-1 intensity variation Sharp decrease over time, followed by lower-level variations Multiple explanations for variation in morphology.
1994	Brown, M.E., Observations of mass loading in the Io plasma torus, <i>Geophys. Res. Lett</i> , 21, 837	High resolution Doppler shift of SII emission indications (over 7 months) deviation from corotation – up to 4 km/s Uniform with longitude – systematic dawn-dusk effect. Io phase effect
1994	Wilson, J.K., N.M. Schneider, Io's Fast Sodium: Implications for Molecular and Atomic Escape, <i>Icarus 111</i> , 31-44	High resolution imaging of fast sodium jets. Modelled as dissociation, ionization or chex of molecular species.
1995	Thomas, Ion temperatures in the Io plasma torus, JGR, 100, 7925	 S+, S++, O+, O++ observed with sufficient resolution to determine perpendicular temperatures. Tpar from images 60-120 eV in warm torus, ~30 eV in cold torus. Should be compared with physical chemistry model of Delamere & Bagenal 2003 and re-analysis of Voyager data by Bagenal 2017

1995	Schneider, Trauger, The Structure of the Io Torus, Astrophys. J. 450, 450-462	High resolution imagery provides structure of S+ emission. Radial, latitude, longitude, local time variations. Significant deviation from O6+ magnetic field model Reference ribbon positions – System III & local time
1996	Spencer, Schneider, Io on the eve of the Galileo mission, Ann. Rev. Earth Planet. Sci., 24, 125-190	First half about Io out to atmosphere. Summary of atmospheric loss rates, plasma-atmosphere interactions, 7 neutral Na populations, O and S clouds, Io plasma torus, average composition, density, spatial distribution, Mass and energy flows List of outstanding Qs
1996	Thomas, High resolution spectra of Io's neutral potassium and oxygen clouds, <i>Astron. Astrophys., 313</i> , 306-314	Neutral K and O
1997	Brown, Bouchez, The response of Jupiter's magnetosphere to an outburst on Io, <i>Science, 278</i> , 268-271	Io outburst March 1992. Both Na and SII emissions increased. Timing indicates sodium increase preceded SII by about 10-20 days. Modeling time profiles suggests that the increased production produced a faster loss from radial transport.
1997	Schneider, Taylor, Crary, Trauger, On the nature of the System III brightness asymmetry in the Io torus, <i>J. Geophys.</i> <i>Res., 102,</i> 19823-19833	Compares optical and UV brightness asymmetries with longitude which are found to be out of phase. Explains with small amount of additional energy being put into system, e.g. via hot electron component. Strong ion temperature variation in the ribbon. Model with cubic-centimeter models
1997	Smyth, Combi, Io's Sodium Corona and Spatially Extended Cloud: A Consistent Flux Speed Distribution, <i>Icarus, 126,</i> 58- 77	Comparison of model with data – from ~2 RIo to ~40 RIo Best fit to Na emissions data with collisional cascade function of power-law alpha~3 to 7/3
1997	Küppers, Jockers, A Multi-emission imaging study of the Io Plasma Torus, <i>Icarus, 129</i> , 48	2D images of torus from GB optical observations SII, SIII, OII. Consistent dawn-dusk nor longitude variations not so clear. Claims Te~11eV in ribbon from line ratios. Uses CITEP.
1998	Smyth, Marconi, An explanation for the east-west asymmetry of the Io plasma torus, <i>J. Geophys. Res., 103</i> , 9091	Took Schneider et al. 1997 variations in brightness and applied offset, tilted dipole OTD to displace the ribbon. 2-D diffusion equation, allowing for E-W variations in L-shells. Produces offsets of S+ vs S++ ribbons. Comments needs molecular chemistry for S+ loss

1998	Kuppers, M. and N.M. Schneider, The density of the Io plasma torus ribbon, <i>Geophys. Res. Lett., 25</i> , 2757-2760	Used CITEP to compare emission models for GB, Voyager and UV views of the ribbon. Not able to explain high densities of Volwerk et al. 1997. Model of cooling via radiation. Points to stochastic heating by variable E-W electric fields.
1998	Smyth, Marconi, An initial look at the iogenic SO2+ source during the Galileo flyby, J. Geophys. Res., 103, 9089	 Models Huddleston et al. 1997 profile of EMIC waves from production of SO2+ and SO+ Uses OTD plus E-W electric field to get offset torus which produces asymmetric ionization of SO2 and short lifetimes
1998	Smyth, Energy escape rate of neutrals from Io and the implications for local magnetospheric interactions, <i>JGR</i> , <i>103</i> , A6, 11941	Plasma-Io interaction to produce neutrals. Diagram to show energy flow through the system.
1999	Burger, M.H. and N.M Schneider, Galileo's Close-up View of Io's Sodium Jet, <i>Geophys. Res. Lett., 26</i> , 3333-3336,	Optical observations of the sodium jet close to Io
1999	Wilson, J.K. and N.M. Schneider, Io's Sodium Directional Feature: Evidence for Ionospheric Escape, <i>J. Geophys. Res., 104</i> , 16567-16583	Model of jet close to Io using multiple CHEX reactions.
2000	Kuppers, M.H and N.M. Schneider, The Discovery of Chlorine in the Io Plasma Torus, <i>Geophys. Res. Lett., 27,</i> 513-516	Optical detection of Cl+ at 2+-0.5% Proposed coming from NaCl
2000	Bouchez, Brown, Schneider, Eclipse spectroscopy of Io's atmosphere, <i>Icarus</i> <i>148,</i> 316-319	Galileo SSI images when Io moves in front of Jupiter. Auroral emission 5 lines of Na and O
2000	Smyth, Marconi, Io's oxygen source: Determination from ground-based observations and implications for the torus plasma, <i>JGR</i> , <i>105</i> , 7783-7792	 Limited GB observations of 6300 OI emission (Brown 1981, Thomas 1996) Modeled with atmospheric production via atmospheric sputtering (similar to sodium) Main losses CHEX (68%) and electron impact ionization (22%) Uses COREQ. Consistent with SO2.
2001	Burger, et al., Mutual event observations of Io's sodium corona, <i>Ap. J. 563,</i> 1063-1074	Extensive observations of Na emission extending out to 10 RIo Fit to radial profiles suggest ~50% densier on sub-jovian hemisphere. n(r)=6700 r ^{-3.34} cm ⁻³

2001	Lichtenberg, Thomas, Fouchet, Detection of S(IV) 10.51-micron emission from the Io plasma torus, <i>JGR</i> , <i>106</i> , 29,899-29,910	Detection of long-wavelength emission from S+++ ions1.5-3.5 times brighter than predicted by VoyagerChemistry model based on COREQWould be good to compare with Steffl/Delamere analysis of Cassinidata using CHIANTI
2001	Oliversen, et al., Sunlit Io atmospheric [OI] 6300 A emission and the plasma torus, <i>JGR, 106,</i> 26,183-26,193	Optical 6300A OI mission from Io 1990-1990 Longitude, E-W and temporal variations Disk-average column density ~1 x 10 ¹⁵ cm ⁻² 2-10 Rayleigh emission – mostly varying with System III plus ~25% scatter Uses Voyager-based Smyth & Combi (1988) and Smyth & Marconi (1998) models
2001	Thomas, Lichtenberg, Scotto, High- resolution spectroscopy of the Io plasma torus during the Galileo mission, <i>JGR</i> , <i>106</i> , 26,277-26,291	 High-resolution observations taken Sept 1997 and Oct 1999 Radial profiles of SII, SIII, OII emissions produce radial profiles of Ti, Ni from 4 to 7.5 RJ System III variations variable High resolution Doppler shift shows deviation from corotation at ~2-4 km/s Compare with Steffl/Delamere observations/model of Cassini UVIS
2001	Wolven et al., Emission profiles of neutral oxygen and sulfur in Io's exospheric corona, <i>JGR, 106</i> , 26155-26182	 30 HST/STIS observations of atmosphere/corona emission out to 10 RIo. Brighter downstream than upstream by ~2 Dusk brighter than dawn Suggestion of System III variations but coverage is poor.
2002	Wilson, Mendillo, Baumgardner, Schneider, Trauger, Flynn, The Dual Sources of Io's Sodium Clouds, <i>Icarus, 157,</i> 476-489	Models close and far Na clouds with exospheric production plus CHEX production of Na ENAs to make Mendillosphere Warns that extending to S, O clouds involves complications of SO2 and SO
2003	Lellouch, Paubert, Moses, Schneider, Strobel, Volcanically emitted sodium chloride as a source for Io's neutral clouds and plasma torus, <i>Nature, 421, 45-</i> 47	Detection of millimeter emission from NaCl in Io's atmosphere Abundance ~0.3% Compared with brighter SO2 emissions
2003	Smyth, Marconi, Nature of the iogenic plasma source in Jupiter's magnetosphere I. Circumplanetary distribution, <i>Icarus, 166,</i> 85-106	Model predictions of O and S neutral clouds around Jupiter. O ~2-3 times S and more spread out Compares with other estimates of local and extended sources

2004	Nozawa et al., Long-term SII emissions from the Io plasma torus between 1997 and 2000, <i>JGR</i> , <i>109</i> , A07209 Mendillo, Wilson, Spencer, Stansberry, Io's	 4 observing periods during S+ emission during Galileo epoch 1 - C9 - 1997 doy 240-252 (Aug26-Sep9) 2 - E16-1998 doy 235-270 (Aug23-Sep27) 3 - C23-1999 doy 250-265 (Sep7-Sep22) 4 - G28-2000-1 doy 350-372 (Dec16-Jan7) Steady decrease in intensity by a factor of ~2 Extended Na cloud varies shape with volcanic eruption rate. Active is brighter and square in shape
	neutral clouds, <i>Icarus, 170,</i> 430	Quiet is dimmer and oval/pointed in shape Correlation with IR eruptions on Io over 1990 to 1998
2005	Nozawa et al., Relationship between the jovian magnetic plasma density and the Io torus emission, <i>GRL, 32</i> , L11101	 Relates 1997-2000 observations to factor of ~8 decrease in electron density 30-60 RJ observed by the GLL-PWS instrument. Note that the Cassini flyby dust increase (~Aug 2000) followed by decrease in UV torus emissions was Oct 1-Dec1 2000 (see Delamere 2005) between observation periods 3 and 4.
2005	Smyth, Marconi, Nature of the iogenic plasma source in Jupiter's magnetosphere II. Near-Io observations, <i>Icarus, 176,</i> 138-154	 Local interaction of plasma (as described in paper I) with Io's atmosphere to produce neutral clouds of S and O around Io (10s RIo) from electron impact ionization and CHEX. 3 regions: Inner (below exobase), corona (below Lagrange sphere), and neutral clouds. Mass and energy sources comparable to GLL estimates from Bagenal 1997 and Saur 2003
2006	Nozawa et al., Implications for the solar wind effect on the Io plasma torus, <i>GRL</i> , <i>33</i> , L16103	 S+ emission observed Sept 1998. 2 points of enhanced emission in late Sept (DOY 267-9). Argued related to QP radio bursts (Morioka 2006) and auroral flares (Waite 2001).
2007	Mendillo, Laurent, Wilson, Baumgardner, Konrad, Karl, The sources of sodium escaping from Io revealed by spectral high definition imaging, <i>Nature, 448,</i> 330- 332	Jet from wake side of Io – not upstream. Extends 3-5 RIo downstream from Io
2007	Schneider, Bagenal, Io's neutral clouds, plasma torus, and magnetospheric interaction, in <i>Io After Galileo</i> , (ed. R. Lopes), Praxis	Survey of observations, models and status of understanding of sources and losses of mass and energy from Io to the magnetosphere.

2008	Herbert, Schneider, Dessler, New description of Io's cold plasma torus, <i>J. Geophys. Res.</i> , <i>113</i> , A01208	 Re-analysis of Schneider's 1991 observations of S+ emission. Quantitative description of the "washer" of cold inner torus. Dawn-dusk and System III variations, Tpar temperatures in the ribbon – variable – shows how varies over time (observer) between 20 eV and 100 eV. Vertical offset (probably high-order structure of magnetic field). Points out difficulty in modeling the physical chemistry of the inner torus and need for additional heat source.
2010	Yoneda, Nozowa, Misawa, Kagitani, Okano, Jupiter's magnetospheric change by Io's volcanoes, <i>GRL, 37,</i> L11202	Na and S+ emissions for 20 days in 2003. Enhancement late Feb – early Mar for few days. Factor 2 increase in Na emission for 2 days. Total fluxtube content of S+ increased by ~25%
2010	Moore, et al. Monte Carlo modeling of Io's OI 6300A and SII 6716 A auroral emission in eclipse, <i>Icarus, 207,</i> 810-833	 Electron impact excitation of the atmosphere. Atmosphere modeled with geographically-varying density (including volcanic plumes) of SO2 Input is inflowing-electrons at 5eV from torus, bounces from edge of torus – longitude-dependent. Predicts OI 6300 emissions observed from different angles. SII emission much weaker.
2011	Smyth, Peterson, Marconi, A consistent understanding of the ribbon structure for the Io plasma torus at the Voyager 1, 1991 ground-based and Galileo J0 epochs, <i>JGR</i> , 116, A07205	Focus mostly on SII emission and electron density. Ratio of outer/inner torus densities varies with time by upto ~4 Quantifies location of ribbon: Dawn 5.8-5.9, Dusk 5.5-5.6 Farthest at System III 120, closest at System III 300. Empirical model with electron density, longitude, LT.
2013	Yoneda, Tsuchiya, Misawa, Bonfond, Tao, Kagitani, Okano, Io's volcanism controls Jupiter's radio emissions, <i>GRL, 40,</i> 671- 675	Enhanced Na observations May – June 2007. Hectrometric radio emission observed by WIND at 1 AU. Over same period the enhanced Na correlated with weaker HOM.
2014	Grava, Schneider, Leblanc, Morgenthaler, Mangano, Barbieri, Solar control of sodium escape from Io, <i>JGR, 119,</i> 404-415	Observations of Na neutral cloud near Io when it comes out of eclipse (behind Jupiter) suggests interruption of photodissociation of NaCl.
2015	Yoneda, Kagitani, Tsuchiya, Sakanoi, Okano, Brightening event seen in observations of Jupiter's extended sodium nebula, <i>Icarus,</i> 261, 31-33	Na observations 2013-2015. Faint emissions except Feb-Mar 2015 when enhanced by a factor of 3