Extended Neutral Clouds

Highlighted papers are useful overview/review/summary

Date	Authors, title, reference	Summary
1976	Eviatar, Mekler, Coroniti, Jovian sodium plasma, Ap. J., 205, 622	Model of production, transport, loss of sodium neutral cloud. Discussion of sodium neutral atoms reaching out into the solar wind.
1980	Cheng – Effects of Io's volcanoes on the Plasma torus and Jupiter's magnetosphere, Ap. J., 242, 812	 Assumes 100 ton/s of SO₂ escapes from Io w/ 10⁶ s (12d) lifetime. Neutral cloud near Io interacts inward-moving energetic ions & electrons (CHEX, dissociation, ionization) Dissociation of SO2 neutral cloud produces more energetic O and S atoms which have larger orbits, with AJs in outer magnetosphere. Also CHEX of torus ions with SO₂ neutral cloud produces flux of escaping ENAs Re-ionization (photo) of extended neutral cloud and escaping ENAs leads to production of hot plasma in the outer magnetosphere.
1981	Kirsh, Krimigis, Kohl, Keath – Upper limits for x-ray and energetic neutral particle emission from Jupiter: Voyager 1 results, GRL, 8, 169	Excess counts in Voyager 1 LECP at ~200 RJ upstream – estimated as (a) x-rays but seemed too high, (b) ENAs from CHEX of LECP- energy particles with neutrals in the IPT. Estimates flux of 10 ²⁵ /s or 0.05% of torus production.
1984	Baker, Zwickl, Krimigis, Carbary, Acuna – Energetic particle transport in the upstream region of Jupiter: Voyager results, JGR, 89, 3775	 Voyager 1 & 2 LECP bursts of >30 keV electrons, protons and heavy ions on dawn – pre-noon side, outside bow shock. Suggests escaping magnetospheric ions as well as re-ionization of escaping ENAs.
1984	Eviatar & Barbosa – Jovian magnetospheric neutral wind and auroral precipitation flux, JGR, 89, 7398	Estimates ENA flux from CHEX in IPT (70 km/s) that are then photoionized in the outer magnetosphere – diffusing inward, scattering in inner magnetosphere, to produce aurora. Also mentions source of interplanetary ENAs – with additional CHEX of energetic ions in the outer magnetosphere as source of LECP particles reported by Kirsh et al. 1981

1985	Krimigis, Zwickl, Baker – Energetic ions upstream of Jupiter's bow shock, JGR, 90, 3947	Voyager 1 & 2 LECP bursts of >30 keV electrons, protons and heavy ions on dawn – pre-noon side, outside bow shock. Suggests escaping magnetospheric particles with subsequent acceleration.
1986	Barbosa & Eviatar – Planetary fast neutral emission and effects on the solar wind: A cometary exosphere analog, Ap.J., 310, 927	 Estimates production of fast neutrals from charge-exchange in the Io torus. Predicts 1-2 x 10²⁸ s⁻¹ escaping from jovian system. Argues they may be found upstream of the jovian system, where they provide significant energy – and ion cyclotron waves.
1990	Mendillo, Baumgardner, Flynn, Hughes – The extended sodium nebula of Jupiter, Nature, 348, 312	Detection of sodium neutrals extending to >400 RJ. Proposes CHEX production at Io's orbit. Shows disk flaring angle of 22°
1992	Mendillo, Flynn, Baumgardner, Imaging observations of Jupiter's sodium magneto- nebula during the Ulysses encounter, Science, 257, 1510	Feb 1992 observations suggested weaker torus and plasma source than 1989/90.
1993	Schreier et al. Modeling the Europa plasma torus, JGR, 98, 21231	Uses Voyager data to argue for a Europa plasma source (12%), enhanced oxygen ions, higher T. Develops physical chemistry model to suggest 5-10/cm ³ density of Europa ions, from source of 2 x 10 ²⁷ s ⁻¹
1994	Flynn, Mendillo & Baumgartner – The jovian sodium nebula: Two years of groundbased observation, JGR, 99, 8403	Observations 1990-92 when decreasing source rate anti-correlates with flaring angle (20°-27°) Minor E-W asymmetry, Io-phase angle variation not significant
1995	Hall et al. – Detection of an oxygen atmosphere on Jupiter's moon Europa, Nature, 373, 677	HST observations of O (1304 & 1356 A) Implies atmosphere of O_2 (10 pbar).
1999	Haggerty & Armstrong, Observations of jovian upstream events by Ulysses, JGR, 104, 4629	10s keV ions measured by Ulysses. Upstream 192 "events" claimed to be of jovian origin – "leakage model"
1999	Burger, Schneider, Wilson – Galileo's close- up view of the Io sodium jet, GRL, 26, 3333	Image of sodium jet from Io with Galileo camera.

2002	Krimigis et al. A nebula of gases from Io surrounding Jupiter, Nature, 415, 994	 Cassini flyby of Jupiter 2000 MIMI detects ENAs coming from Europa region – 50-80 keV/nucleon, assumed to be hydrogen. 1-2 x 10²⁶ s⁻¹ spreading out upstream and suggesting source of heat when picked up in the solar wind. Predicts spherical disk of energetic neutrals.
2003	Lagg et al. In situ observations of a neutral gas torus at Europa, GRL, 30, 1556	 GLL EPD measurements 6-20 RJ show depletion features, suggesting H+ charge exchange with neutral material coming from Europa. 20-50 neutrals cm⁻³ needed.
2003	Mauk et al. Energetic neutral atoms from a trans-Europa gas torus at Jupiter, Nature, 421, 920	ENA flux measured by Cassini MIMI. 50-80 keV. 10 ²⁵ s ⁻¹ source
2004	Mauk et al. – Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere, JGR, 109, A09S12	Voyager LECP observations of 50 keV to 50 MeV ions, including PA evidence of interaction w/ neutrals near Europa's orbit. Fluxes of ENAs from ~Europa orbit consistent with Cassini images indicate total gas population of ~ 10^{34} neutral particles.
2004	Mendillo, Wilson, Spencer, Stansberry – <i>lo's</i> volcanic control of Jupiter's extended neutral clouds, Icarus, 170, 430	Na data from 1989-1999 Correlation Na brightness w/ IR from Io, suggesting volcanic control. Change in shape of extended disk with activity.
2004	Burger, Johnson – Europa's neutral cloud: Morphology and comparison to Io, Icarus, 171, 557	Model of sodium cloud from Europa – as observed by Brown 2001. Produces a cloud that is very closely tied to Europa – strong variation with orbit phase (contrast to uniform H ₂ cloud)
2005	Hansen, Shemansky, Hendrix – Cassini UVIS observations of Europa's oxygen atmosphere and torus, Icarus, 176, 305	Cassini UVIS (Jan 2001) detection of O ₂ atmosphere of Europa, plus extended corona of atomic O. Density limited to <8 atoms/cc for O and O ₂
2005	Takihashi, Misawa, Nosawa, Morioka, Okano, Sood – Dynamic features of Io's extended sodium distributions, Icarus, 178, 346	From Io to 400 RJ imaging of sodium extended cloud 1998-1999. System III longitude variations, Io phase modulation, East-West variations, Source estimate 1-4 x 10 ²⁶ /s
2007	Mendillo, Laurent, Wilson, Baumgardner, Konrad, Karl – The sources of sodium escaping from Io revealed by spectral high definition imaging, Nature, 448, 330	Io source of Na cloud from CHEX and molecular recombination. Extends farther down tail than suggested by Galileo flyby observations.

2009	Yoneda, Kagitani, Okano, Short-term variability of Jupiter's extended sodium nebula, Icarus, 204, 589	Observations of extended Na cloud – May-June 2007. Variations with Io phase & East vs. West. Modeled with 2-D model.
2015	Yoneda, Kagitani, Tsuchiya, Sakanoi, Okano, Brightening event seen in observations of Jupiter's extended sodium nebula, <i>Icarus,</i> <i>261</i> , 31-33	Na observations 2013-2015. Faint emissions except Feb-Mar 2015 when enhanced by a factor x3. Same as Hisaki torus event.
2016	Kollman, Paranicas, Clark, Roussos, Lagg, Krupp – The vertical thickness of Jupiter's Europa gas torus from charged particle measurements, GRL, 43, 9425	Galileo EPD-Composition Measurement system 100 keV -MeV range – separates ions by mass. C10, E11, E15, E19, C20, C21 ~130 eV protons PA minimum at 70° Modeled as CHEX of H ⁺ with H ₂ neutral cloud to find 3° (H=1 RJ) height of neutral cloud, max. equatorial density of 260-410 cm ⁻³ Implies (via Smyth & Marconi 2006) that O density 20-50 cm ⁻³
2017	Kollman et al <i>A heavy ion and proton</i> <i>radiation belt inside of Jupiter's rings, GRL,</i> 44,	Juno-JEDI (PJ1) ~830 keV ions close to PA>80° around C/A. Lack of electrons. Hard making sulfur ions, no electrons with CRAND. ENAs from Europa cloud electron-stripped in atmosphere.