SWAP Capabilities

Heather Elliott (helliott@swri.edu) and the SWAP team

Introduction

- New Horizons (NH) trajectory
- Brief description of the Solar Wind Around Pluto (SWAP) instrument
- Examples of SWAP measurements
- Types of Science Studies
 - Radial Trends
 - Radial profiles of the solar wind parameters
 - Radial profiles of interstellar pickup ions
 - Slowing of the solar wind relative to the inner heliosphere.
 - Radial variation of T-n relationship (polytropic index).
 - Pickup Ion interplanetary shock modification
- NH will be the 1st mission to measure interstellar pickup ions and the solar wind when crossing the termination shock.

Few Missions Have Explored the Outer Heliosphere

Instrument Overview : NH Solar Wind Around Pluto (SWAP)

- Tophat electrostatic analyzer.
- The SWAP field of view is 276° by 10°
- Coincidence measurements based on timing between primary and secondary CEM detector signals.
- The ratio of the SCEM to PCEM rate can be used to separate heavy and light ions.

Individual SWAP Energy Sweeps

- The accumulation time for each measurement is 0.39 sec.
- Both the coarse and fine sweeps are 32 sec each.
- A 64 step coarse energy sweep spanning the full energy range (~21-7800 eV) is followed by a 64 step fine sweep centered on the peak count rate in the coarse scan.
- The time between sweeps is variable.
 - Based on resources: 5 min, 10 min, 20 min, 30 min, 1hr, or 2hr
 - 64 sec continuous near Pluto and MU69, and Pluto rehearsal.

SWAP Spectrograms

Radial Profiles of New Horizons Solar Wind Parameters

- Density profile drops off slightly less (r^{-1.83}) than spherical expansion (r⁻²).
- Temperature profile (r^{-0.71}) decrease a lot less than what would be expected for adiabatic cooling (r^{-1.33}) implying heat must be added in the outer heliosphere.
- Based on the NH speed profile alone we see no clear radial trend.

Radial Trends in PUI Parameters

- Solar wind density decreases more steeply (r^{-1.83}) than the interstellar pickup ion density does (r^{-0.59}).
- Solar wind temperature is slightly decreases (r^{-0.71}) in the outer heliosphere, but the interstellar pickup ion temperature increases with distance (r^{+0.18}).
- Solar wind thermal pressure decreases rapidly (r^{-2.5}), but the thermal pressure for the interstellar PUI decreases less rapidly (r^{-0.327}).

Average 1 AU Wind Speeds and Propagate Out to NH

- Amplitude of solar wind structures is much larger at 1 au.
- Many structures at 1 au merge and/or are worn down prior to reaching NH.

Direct Comparison of NH (No Averaging) and Solar Rotation Averaged 1 AU Data

- SWAP data NOT averaged.
- 1 au data propagated and 25 day running average.
- Many structures at 1 au merge and/or are worn down prior to reaching NH.

Direct Comparison of Solar Rotation Averaged NH and 1 AU data

- Same format as previous plot with running solar rotation averages for the New Horizons data.
- Beyond late 2015 the speed at New Horizons is consistently lower than the 1 au speeds.

Radial Variation of Percent Slowing of the Solar Wind

• Between 30 and 43 au New Horizons observes an averaging slowing of the solar wind ranging between 5 to 7% compared to 1 au speeds.

Determining the Polytropic Index (γ): Method 1 & 2

Fitting the Solar Wind Polytropic Index (γ) Radial Profile

- The solar wind polytropic index decreases towards 0 in the outer heliosphere.
- IBEX results indicate the plasma polytropic index is ~0 in the inner heliosheath.

Total (SW +PUI) Pressure Vs Density

With SWAPI on IMAP there will be solar wind and interstellar pickup data at 1 au starting in 2025.

- Assume at 1 au no pickup.
- Used SW and PU at NH.
- The gray lines indicate adiabatic lines.
- The inner heliospheric data is close to adiabatic.
- The outer heliosphere data departs from adiabatic.
- The inner and outer heliosphere do not line along a common adiabatic line.

When Will New Horizons Reach the Termination Shock?

- New Horizons moves at ~14 km/s which corresponds to about 3 au/year.
- The Voyagers crossed the TS at 94 and 84 au during a very active solar cycle.
- NH is at ~49 au, and will reach 80 au in about 10.3 years and 95 au in ~15.3 years.
- Our current polytropic index estimate of a TS crossing at ~62 au provides a minimum time to reach the TS of ~4.3 years, since that was based on measurements from a less active cycle and the activity level is increasing.
- Based on these estimates depending on the solar cycle activity the time for NH to reach the TS could range from about 4 to 16 years.

- Based on initial power estimates NH will have sufficient power to be on and operating until somewhere in the 90 to 110 au range (Stern et al. 2018, SSR).
- Therefore, it is highly likely NH will have power when it crosses the termination shock.

Summary and Conclusions

- 1. New Horizons is the only spacecraft in the solar wind.
- 2. It is headed towards the ribbon.
- 3. It can be used to study the solar wind and interstellar pickup ions in the outer heliosphere.
- 4. Provides valuable constraints for simulations.
- 5. NH will be the 1st mission to measure interstellar pickup ions and the solar wind when crossing the termination shock.

BACKUP

Pluto's Heavy Ion Tail

Implications

- Extrapolating the amount of slowing to the inner heliosphere we find the slowing begins around 4au.
- IBEX observations indicate the polytropic index goes to zero in the heliosheath.
- Extrapolating the solar wind polytropic index to find when it goes to 0 produces termination shock at ~62 au.
- However, the solar activity is increasing so New Horizons may cross the termination shock at a distance closer to the 84 to 94 au Voyager crossing distances.

Solar Activity Level

- Voyager 2 observed more variability in the outer heliosphere because that solar cycle was more active.
- Speeds at NH not as variable owing to lower activity levels

Determining the Polytropic Index (γ): Method 3s

Amount of Slowing Depends on the Interstellar Material Picked Up

$$\frac{n_{pui}}{n_{sw}} = -\frac{\delta v}{v_{sw}} \left(\frac{2(2\gamma_{sw}-1)}{(3\gamma_{sw}-1)}\right)$$

- Richardson et al. (1995) assumed an adiabatic heating profile and let $\gamma_{sw} = 5/3$.
- This equation is derived by solving the continuity, and momentum equations.
- Includes photoionization, charge exchange, and constant interstellar neutral density in the outer heliosphere.
- Spherically expanding solar wind density profile.
- Here, we let γ_{sw} depend on distance ($\gamma_{sw}(r)$).
- The polytropic index is weakly dependent on radial distance.

Richardson et al., 1995

Radial Trends from Voyager 2

Richardson et al., 1996