

The Venetia Burney Student Dust Counter

Mihály Horányi

- 7) Alex Doner
- 6) Edwin Bernardoni
- 5) Marcus Piquette
- 4) Jamey Szalay
- 3) Andrew Poppe
- 2) David James
- 1) Colin Mitchell

Milestones:

0/2003
7/2003
10/2003
6/2004
8/2004
9/2004

Identical requirements to any other flight instrument!

0

<u>Key Properties</u> Active Area of 0.1 m² Consists of Three Assemblies: 1. Detector Assembly (18" x 12")

- 2. Electronics Box (5.4"x8.25"x1.825")
- 3. Intra-Harness

Distance (AU)	Ulysses	Galileo	SDC
2.66–3.55 3.99–4.67	$\begin{array}{c} 0.4^{1.2}_{0.0} \\ 0.2^{0.7}_{0.0} \end{array}$	$1.5^{1.8}_{0.7}\\1.3^{1.7}_{0.3}$	$1.1_{0.0}^{3.2} \\ 1.1_{0.0}^{4.1}$
$a_m > 1.5 \times 10^{-12} g$	g, $[10^{-4} \text{ sec}^{-1} \text{ m}^2]$.		

Poppe et al., 2010

6

Dust production in the Kuiper Belt

9

Total EKB dust production in the size range of 0.5 – 10 μ m: (8.9 ± 0.5) × 10⁵ g/s

The production power-law index: $d\dot{M}/dm = \dot{M}_o (m/m_o)^{-\alpha/3}$ $\alpha = 3.02 \pm 0.04$

Han et al., GRL (2011)

Flux Measurements (>0.63 μ m)

Flux Measurements (>0.63 µm)

Flux Measurements (>0.63 µm)

Conclusion

I. Heliospheric science goals

Continue mapping the dust size and density distributions Support analysis and interpretation of IMAP/IDEX measurements of ISD Support the development of ISP science goals/payload

II. Feasibility

Continuous operations of VBSDC VBSDC is designed, via its autonomy rules & large memory, to remain standalone for > 2 years without s/c commands or data dumps (data volume: 100 Kbyte/year)

III. No flight or ground tests and/or flight software developments are needed

IV. Open issues:

lack of large (>> 1 micron radius) particle "seen" by the Pioneers

 a) oblique impacts
(The response of varying particle density and incidence angle on Polyvinylidene Fluoride dust detector, M. Piquette et al., RSI, 2020)

b) revisit calibration/penetration of Pioneer beer can detectors

Conclusion

50 [au] 100

150