

Interstellar Neutral Atoms from the Very Local Interstellar Medium to 1 au

Paweł Swaczyna

(swaczyna@princeton.edu)

Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA

Outer Heliosphere Workshop, July 21-23, 2021

Our interstellar neighborhood

Local Interstellar Medium:

- 15 warm, partially ionized clouds AND
- fully ionized hot plasma around them

Swaczyna, Interstellar Neutral Atoms from the Very Local Interstellar Medium to 1 au

- Local Interstellar Cloud (LIC) is defined as:
 - 1) warm cloud inside which Sun (and heliosphere) is located
 - specific cloud identified by Redfield and Linsky (2008)
- Are these two definitions compatible?
- Verification: observations of interstellar neutrals inside the heliosphere (e.g., IBEX).
- Here: Pristine Very Local Interstellar Medium (VLISM) denotes the interstellar medium through which the Sun moves, before it is modified by the heliosphere.
- Plasma neutral atoms equilibrium in the pristine VLISM (?)

 Linsky et al. (2019): LIC ≠ pristine VLISM: "The LIC cloud provides the closest match to the inflow parameters provided by IBEX, Ulysses, and STEREO, but the match is not perfect"

Two populations of ISN atoms

Plasma flow is diverted around the heliopause, but ISN atoms can freely penetrate the heliosphere.

• Primary ISN atoms:

- From pristine Very Local Interstellar Medium (VLISM)
- Secondary ISN atoms:
 - Created in the outer heliosheath from perturbed plasma by charge exchange process

BEX-Lo observations of Interstellar neutral helium

OH Workshop, July 21-23, 2021

Physics.. Princetor

- Helium atoms do not produce negative ions on the conversion surface...
- ... but can sputter negative ions from the conversion surface.
- Energy spectrum of sputtered ions is wide and thus ISN He atoms are observed in all four lowest IBEX-Lo energy steps.

Möbius et al. (2012, ApJS 198, 11)

Primary ISN: Ulysses – IBEX enigma

• First round of quantitative analysis from IBEX-Lo using two first years of observations:

Bzowski et al. (2012, ApJS 198, 12) Möbius et al. (2012, ApJS 198, 11) $\lambda_{\rm ISN}$ ~79°, $v_{\rm ISN}$ ~23 km s⁻¹, $T_{\rm ISN}$ ~ 6200 K

- Inconsistent with Ulysses values: Witte et al. (2004, AdSpR 34, 61) $\lambda_{\rm ISN}$ ~75°, $v_{\rm ISN}$ ~26 km s⁻¹, $T_{\rm ISN}$ ~ 6300 K
- Reanalyzes of Ulysses observations: Bzowski et al. (2014, A&A 569, A8) Wood et al. (2014, ApJ 801, 62) λ_{ISN} ~75.5°, ν_{ISN} ~26 km s⁻¹, T_{ISN} ~ 7400 K
- With four more years of IBEX-Lo data:

McComas et al. (2015, ApJ 801, 28) Bzowski et al. (2015, ApJS 220, 28) Schwadron et al. (2015, ApJS 220, 25) Möbius et al. (2015, ApJS 220, 24) $\lambda_{\rm ISN} \sim 75.5^{\circ}, v_{\rm ISN} \sim 26 \ {\rm km \ s^{-1}}, T_{\rm ISN} \sim 7500 \ {\rm K}$ Consistency restored

Collisions in the outer heliosheath

- Charge exchange collisions:
 - Losses to the primary population
 - Production of the secondary population
 - ~5% of He atoms, ~50% of H atoms
 - Mostly resonant collisions
- Elastic collisions:
 - Slowdown and heating
 - Angular scattering of colliding particles
 - Most atoms undergo multiple collisions
 - Collisions with multiple species

Secondary population – density of He⁺

Elastic collisions of ISN He atoms

Swaczyna et al. 2021, ApJL 911:L36

- Elastic collision \rightarrow partial momentum exchange
- Most scattering angles are very small
- Average number of collisions in the outer heliosheath: 4.3 with protons: 1.6, with neutral H: 2.6, with He⁺: 0.16

OH Workshop, July 21-23, 2021

Swaczyna, Interstellar Neutral Atoms from the Very Local Interstellar Medium to 1 au

Slowdown and heating of ISN He

Swaczyna, Interstellar Neutral Atoms from the Very Local Interstellar Medium to 1 au

- Energy per charge: 0.023 7.87 keV/q
- 64 logarithmically spaced energy bins: $\Delta E/E = 8.5\%$ FWHM
- Data accumulated over 1-day periods
- Identified components:
 - Solar Wind (SW) protons
 - SW alpha particles
 - SW He⁺ ions
 - Hydrogen PUIs
 - Helium PUIs
 - Background: penetrating particles

Pickup ions from ISN atoms

- New Horizons does not observe ISN hydrogen atoms directly.
- Ionization of ISN H atoms \rightarrow pickup ions (PUIs)

• SWAP observations: fraction of PUIs in SW flux is proportional to the column density of ISN H:

$$n_{\rm PUI}(r) = \frac{r_0^2}{r^2} \frac{\beta_0}{u_{\rm sw}} \int_0^r n_{\rm H}(r') dr' \equiv \frac{r_0^2}{r^2} \frac{\beta_0}{u_{\rm sw}} N_{\rm H}(r)$$

- The column density of ISN hydrogen increases as New Horizons moves away from the Sun (color dots; averages over 1-au bins in black).
- Ionization rates using proton density measured by SWAP
- Density of ISN He inside the heliosphere, but far from the Sun
 - $n_{H,TS} = 0.1268$ $\pm 0.013_{(\sigma)}$ $\pm 0.005_{(instr)}$ $\pm 0.004_{(\lambda)}$ $\pm 0.003_{(method)}$ $\pm 0.0015_{(He+)}$ $\pm 0.0011_{(stat.)} \text{ cm}^{-3}$

Swaczyna et al

• Combined uncertainty: ± 0.015 cm⁻³

Summary

What can we learn?

- Direct observations of primary ISN He atoms \rightarrow flow and temperature of the pristine VLISM
- Secondary ISN He → plasma flow in the outer heliosheath
- Continuous observations over solar cycle → evolution of ionization processes inside the heliosphere
- Pickup ions \rightarrow high precision density of interstellar neutrals in the heliosphere

Processes modifying the ISN populations needs to be well known to find an accurate picture.

Connections

- IBEX-Lo Voyagers: in situ observations of outer heliosheath. Are they consistent with the picture given by the secondary ISN He?
- SWAP IBEX-Hi/INCA: ISN H density is a key parameter for ENA studies.
- Lyman α observations → weighted integrated density of ISN H.
- Ionization data sources → Is the observed modulation of ISN He consistent with the ionization models?
- Models, models, models...