Predator-Prey Analogs for Saturn's Non-Linear Ring Dynamics

LW Esposito, S Madhusudhanan, M Rehnberg, Z Brown, N Albers

LASP - University of Colorado

JE Colwell

University of Central Florida

Final Cassini Symposium Boulder August 2018

Transient ring structures appear where the rings are perturbed strongly

- Equinox objects at the Mimas 2:1 resonance
- Straw between density wave crests
- Excess variance increases between wave crests
- Gap edges when a moon passes by
- Solitary waves where the Janus resonance falls on Epimetheus density wave every 8 years

'Straw' seen between density wave crests must form in less than 10 hours

Straw from Cassini Grand Finale

Alpha Virginis Rev 34I

Particle statistics show larger structures between density wave crests

Daphnis Edge Wake shows downstream effect

Ring Edge Shears and Separates

Solitary wave propagating through A ring, seen every 8 years

How to explain this dynamic structure?

- Solitary waves and the large amplitude, rapidly growing transient structures indicate non-linear phenomena
- N-body simulations are too slow, and don't include all the physics
- Use a simpler model with an ecological analogy: *Predator–Prey*
- Track the mass and velocity dispersion: Relative velocity is stirred up by clumps, velocity disrupts clumps
- Force the system by the moon's gravity driving the surface mass density and the velocity dispersion
- Allow for disk instability, using Toomre's dispersion formula
- Use numerical simulation results for outcomes of stochastic collisions (Hyodo & Ohtsuki; Leinhardt & Stewart)

Predator-Prey Equations for Ring Clumping (Esposito *et al* 2012) M=∫n(m) m² dm / <M>; V_{rel}²=∫n(m) V_{rel}² dm / N

 $dM/dt = M/T_{acc} - V_{rel}^2/v_{th}^2 M/T_{coll}$ [accretion] [fragmentation/erosion]

 $\frac{dV_{rel}^{2}}{dt} = -(1-\epsilon^{2})V_{rel}^{2}/T_{coll} + (M/M_{0})^{2} V_{esc}^{2}/T_{stir}$ [dissipation] [gravitational stirring] - A_{0} cos(\omega t) [forcing by streamline crowding]

The aggregate mass, M is the 'prey'; The dispersion V_{rel}^2 is the 'predator': It feeds off of the mass by grav stirring; The predator reduces the prey by erosion

Predator Prey Model with Logistic Growth

Basic equation :

$$T_{S} = \frac{T_{orb}}{2\pi\tau'_{S}}$$

$$\tau_{s}' = \tau_{s} \left(1 - \frac{M}{M_{L}}\right)$$

$$\frac{dM}{dt} = \left[\frac{M}{T_{S}}\frac{S}{R}\frac{\rho_{0}}{\rho} + \frac{M}{T_{DI}} - \frac{M}{T_{S}}\frac{S}{R}\frac{\rho_{0}}{\rho}\frac{V_{rel}^{2}}{V_{th}^{2}}\right]$$

$$\frac{M}{T_{DI}} = 0 \text{ when } \omega^{2} \ge 0$$

$$\frac{dV_{rel}^{2}}{dt} = -\frac{V_{rel}^{2}}{T_{S}}\left[(1 - \varepsilon^{2}) + \frac{\tau_{B}}{\tau'_{S}}\right] + \frac{V_{esc}^{2}(M)}{T_{S}}\frac{\tau_{B}}{\tau'_{S}}$$

Motivation: When their Mass reaches a limiting value, the aggregates cannot grow further by ring particle sweep up, since we have only a finite number of ring particles to stick to the growing aggregates. This is modelled by adding a *logistic growth* term limiting the optical depth of smaller aggregates.

Thus, the closer the aggregate mass M to M_limit, the slower the growth rate.

Note: After the limiting mass is reached, the aggregates change in mass only due to stochastic collisions which yield accretions and disruptions.

Strength regime surface mass density forcing phase plots

4% variation

$$\Sigma = \Sigma_0 \frac{1}{\left(1 + m \sin\left(\omega_{syn}t\right)\right)}, m = 0.97$$

Disk instability when:

$$\omega^{2} = \kappa^{2} - 2\pi G \Sigma |k| + v_{s}^{2} k^{2}$$

$$\omega^{2} < 0$$

Equilibrium distribution of aggregates from stochastic collisions is a power law

Conclusions

- Ring structure shows transient clumping in perturbed regions: We conclude that forcing by the moon triggers aggregation. This also increases the relative velocity, liberating small particles
- The structure forms rapidly, on orbital time scales, out of phase with the moon... and downstream of the moon's wake initiation
- We find that growth by sweep-up is too slow to explain the excess structure observed in between density wave crests
- Gravitational disk instability can act on orbital time scales; We use Toomre's stability parameter Q to estimate the growth rate for clumps
- We achieve rapid growth by modulating the surface mass density, decreasing the velocity dispersion or by decreasing the shear
- Aggregates from stochastic collisions have a power-law size distribution

Take away message: Moon forcing drives accretion, triggers disk instability, producing transient clumps downstream: A continuing process of Cosmic Recycling

Back-Up

We can force the Predator-Prey model by surface mass density or by velocity variations, which give similar outcomes.

Clump mass M, from $V_{rel}=0$ for > 0.3T_{orb}

Mass variations around the fixed points: 0.7torb = 64.4% 0.6torb = 60% 0.5torb = 51% 0.4torb = 48% 0.3torb = 31%

Using Numerical simulations results

- What happens when equal sized object collide randomly?
- Can Numerical simulations be used to base the statistics of random events?

Using the results of Hyodo and Ohtsuki:

- The outcomes of the stochastic events are based on the ratio of Impact/Escape velocity and the direction of collision.
- The direction of collision can be radial, azimuthal and vertical. Direction is chosen with equal probability.

Hyodo and Ohtsuki: 140K km case simulation

Random Event Outcomes:

- Accretion : Green region: This event doubles the current mass.
- Hit and run : Blue region: This event does not change the mass.
- disruption : Red region: This event halves the mass.

Note: This simulation considers presence of strong tidal waves. (Distance from Saturn : 140k km)

Limiting mass calculation: computed based on cell size

$$M_{L} = 500m \times 10^{4} m \times \Sigma_{0}$$

$$M_{L} = 5 \times 10^{4} cm \times 10^{6} cm \times 100g / cm^{2}$$

$$M_{L} = 5 \times 10^{12} g \text{ or } 5 \times 10^{9} kg$$

$$M_{0} = 1.0472 \times 10^{6} kg$$

$$M_{L} = 4.7746 \times 10^{3} M_{0} \sim 5 \times 10^{3} M_{0}$$

Input parameters:

tauS = 1

tauB = 0.1; tauS/tauB = 10.

epsilon = 0.1 Coefficient of restitution

 $rho0 = 0.25g/cm^3$. Uncompressed density of ring particle aggregates.

m0 = 1.05×10^9 g, mass of R0=10m sphere with rho0=0.25g/cm³. Reference mass.

S = 300cm, small particle radius, from mass density rho0=0.25 g/cm³, and optical depth tauS=0.1.

Vthresh(M0) = 1 cm/sec

Equilibrium distribution of Mass of aggregates:

The Power Law for index radius distribution was found to be : -0.3386

Final Plots (Distance from Saturn 140K km, presence of tidal environment)

Power Law Index: -0.3386

x(t) - Mass (M/M_)

Power Law Index: -1.0158 Equilibrium probabilities of Mass statespace 10⁰ Equilibrium probabilities of Radius of aggregates 10⁰ 10⁻¹ 10⁻¹ Probabilities Probabilities 10⁻² 10⁻² 10⁻³ 10² 10³ 10⁴ 10⁵ R in m 10⁻³ 10⁶ 10⁸ 10¹⁰ 10⁴

Conclusion:

- The Predator Prey model can include the outcomes of random collisions in the presence of tidal environment by using the results of numerical simulations.
- The power law index of mass distribution was found to be : -0.3386
- The power law index of radius of aggregates distribution was found to be : -1.0158
- The power law index of the mass distribution obtained from the simulation match well with results obtained from observations. (more explanation might be needed for this point)
- The Mass distribution can be computed for different settings of tidal environment.
- The Long term behavior of the rings can be statistically predicted using the equilibrium mass distributions using Predator Prey model, which could otherwise be very time consuming.
- Though there is a strong presence of tidal environment (140k km, there is still a possibility of finding
 aggregates with high masses, this could explain the presence of Straws in F ring ?(Not very sure about this
 point)