Posts Tagged: LASP

LASP to collaborate on new Grand Challenge projects

The University of Colorado Boulder’s cross-campus Grand Challenge initiative this week announced the selection of three new additions to its portfolio starting this fall. The call for proposals, which was announced in June, funded one large research initiative at approximately $1 million per year and two smaller projects at $250,000 per year, each for at least three years. LASP will collaborate on the research initiative and on one of the two smaller projects.

The selections augment the current Grand Challenge portfolio, building on the accomplishments of Earth Lab, Integrated Remote and In Situ Sensing (IRISS), the university’s space minor, and the Center for the Study of Origins.

LASP scientists ready for Cassini’s grand finale

LASP planetary scientist Larry Esposito has been eying the fabulous rings of Saturn for much of his career, beginning as a team scientist on NASA’s Pioneer 11 mission when he discovered the planet’s faint F ring in 1979.

He followed that up with observations of Jupiter’s and Saturn’s rings from the Voyager and Galileo spacecraft, which carried instruments designed and built at LASP. Now, as the principal investigator for the Ultraviolet Imaging Spectrograph (UVIS) on the Cassini-Huygens mission to Saturn, Esposito and his Cassini colleagues are feeling a bit somber as the mission nears its end. The spacecraft has run out of fuel and will disintegrate in Saturn’s dense atmosphere early on the morning of Sept. 15.

Building education satellites: LASP leads international team

LASP has joined forces with universities and space agencies from around the world in an international effort to design and build small satellites as a way to train future scientists and engineers.

The project, known as the International Satellite Program in Research and Education (INSPIRE), so far involves seven nations—the U.S., France, Taiwan, Japan, India, Singapore and Oman—says Project Manager and LASP engineer Amal Chandran.

The aim of INSPIRE is to establish a long-term academic program for developing a constellation of small satellites and a global network of ground stations, Chandran explains.

CHESS Mission Will Check Out the Space Between Stars

Deep in space between distant stars, space is not empty. Instead, there drifts vast clouds of neutral atoms and molecules, as well as charged plasma particles called the interstellar medium—that may, over millions of years, evolve into new stars and even planets. These floating interstellar reservoirs are the focus of the NASA-funded CHESS sounding rocket mission, which will check out the earliest stages of star formation.

CHESS—short for the Colorado High-resolution Echelle Stellar Spectrograph—is a sounding rocket payload that will fly on a Black Brant IX suborbital sounding rocket late in the night on June 26, 2017. CHESS measures light filtering through the interstellar medium to study the atoms and molecules within, which provides crucial information for understanding the lifecycle of stars.

1,000 Days in Orbit: MAVEN’s Top 10 Discoveries at Mars

NASA’s MAVEN mission to Mars led by LASP and the University of Colorado Boulder will hit a happy milestone on Saturday, June 17: 1,000 days of orbiting the Red Planet.

Since its launch in November 2013 and its orbit insertion in September 2014, the Mars Atmosphere and Volatile Evolution Mission (MAVEN) has been exploring the upper atmosphere of Mars, said LASP associate director and CU Boulder Professor Bruce Jakosky, principal investigator of the mission. MAVEN is bringing insight into how the sun stripped Mars of most of its atmosphere, turning a planet once possibly habitable to microbial life into a barren desert world.

NASA’s Van Allen Probes spot man-made barrier shrouding Earth

Humans have long been shaping Earth’s landscape, but now scientists know we can shape our near-space environment as well. A certain type of communications—very low frequency, or VLF, radio communications—have been found to interact with particles in space, affecting how and where they move. At times, these interactions can create a barrier around Earth against natural high energy particle radiation in space. These results, part of a comprehensive paper on human-induced space weather, were recently published in Space Science Reviews.

“Our recent work with the LASP Van Allen Probes instruments has shown compelling evidence that the radiation belts are quite subject to human-made waves emanating from ground-based radio transmitters. Thus, humans have not only been affecting the oceans and atmosphere of Earth, but have also been affecting near-Earth space,” said Dan Baker, LASP director and co-author of the paper.

GOLD installed on commercial communications satellite

A LASP-built instrument that will provide unprecedented imaging of the Earth’s upper atmosphere has been successfully installed on the commercial satellite that will carry it into geostationary orbit some 22,000 miles above the Earth.

The Global-scale Observations of the Limb and Disk (GOLD) mission, led by the University of Central Florida (UCF) and built and operated by LASP, features a collaboration with satellite owner-operator SES Government Solutions (SES GS) to place an ultraviolet instrument as a hosted payload on a commercial satellite.

GOLD one step closer to launching into space

A NASA instrument that will study the upper atmosphere and the impact of space weather on Earth is a step closer on its journey into space.

The Global-scale Observations of the Limb and Disk (GOLD) mission, led by University of Central Florida (UCF) scientist Richard Eastes, is scheduled to launch in late 2017 from Florida. Earlier this month, the LASP-built instrument was shipped to Airbus Defence and Space in Toulouse, France, for integration on the SES-14 communications satellite, on which it will be launched into space.

LASP will lead operations for NASA black holes mission

University of Colorado Boulder students and LASP professionals will operate an upcoming NASA mission that will investigate the mysterious aspects of some of the most extreme and exotic astronomical objects like stellar and supermassive black holes, neutron stars and pulsars.

Objects such as black holes can heat surrounding gases to more than a million degrees, causing high-energy emissions in the X-ray portion of the electromagnetic spectrum. The high-energy X-ray radiation from this gas can be polarized, which causes it to vibrate in a particular direction.

The NASA Imaging X-ray Polarimetry Explorer (IXPE) mission will fly three space telescopes with cameras capable of measuring the polarization of cosmic X-rays, allowing astronomers to answer fundamental questions about such turbulent environments.

Ready for launch: Instrument suite to assess space weather

A multimillion dollar CU-Boulder/LASP instrument package expected to help scientists better understand potentially damaging space weather is now slated to launch aboard a National Oceanic and Atmospheric Administration satellite on Saturday, Nov. 19.

Designed and built at LASP, the instrument suite known as the Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS) is the first of four identical packages that will fly on four NOAA weather satellites in the coming decade. EXIS will measure energy output from the sun that can affect satellite operations, telecommunications, GPS navigation and power grids on Earth as part of NOAA’s next-generation Geostationary Operational Environmental Satellites-R Series (GOES-R).

MAVEN spacecraft completes one Mars year of science observations

Today, the LASP-led MAVEN mission has completed one Mars year of science observations. One Mars year is just under two Earth years.

The Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft launched on Nov. 18, 2013, and went into orbit around Mars on Sept. 21, 2014. During its time at Mars, MAVEN has answered many questions about the Red Planet.

MinXSS CubeSat fills critical gap in measuring the sun

A bread loaf-sized satellite, designed and built by University of Colorado students, has been collecting data since its deployment from the International Space Station on May 16 and is providing observations of the sun at unprecedented wavelengths and resolution.

The Miniature X-ray Solar Spectrometer (MinXSS)—a 30cm x 10cm x 10 cm, 3-unit satellite—is the first ever science CubeSat launched for NASA’s Science Mission Directorate and has already met its minimum mission science criteria for data and observations.

LASP recognized for research on critical space weather missions

Based on years of dedication to studying the sun and its effects on space-borne and Earth-based technological systems, and under strong leadership from LASP director Dan Baker, a team of LASP scientists and engineers is being recognized for research into this ever present threat to modern society. CO-LABS announced today four winners of their 2016 Governor’s Award for High-Impact Research, with the LASP team winning in the Earth Systems and Space Sciences category.

CO-LABS is a non-profit consortium of federal research labs, research universities, businesses, and economic development organizations with a mission to support and expand the positive impacts of Colorado’s science and technology resources. Since 2009, the Governor’s Award for High-Impact Research has honored Colorado scientists and engineers from the state’s federally funded research laboratories for outstanding achievements.

LASP scientists, students primed for Juno arrival at Jupiter

A group of LASP scientists and students are anxiously awaiting the arrival of NASA’s Juno spacecraft at Jupiter July 4, a mission expected to reveal the hidden interior of the gas giant as well as keys to how our solar system formed.

Launched in 2011, the spacecraft is slated to orbit Jupiter’s poles 37 times roughly 3,000 miles (4,828 kilometers) above its cloud tops to better understand the origin and evolution of the largest planet in the solar system. Scientists hope to determine if Jupiter has a solid core, measure the planet’s magnetic fields, hunt for water vapor and observe the polar auroras.

Three planetary scientists from LASP and five University of Colorado Boulder (CU-Boulder) students are part of the Juno mission.

LASP research points to electrostatic dust transport in reshaping airless planetary bodies

A team of LASP scientists, led by University of Colorado physics professor Mihály Horányi, has conducted laboratory experiments that may bring closure to a long-standing issue of electrostatic dust transport, explaining a variety of unusual phenomena on the surfaces of airless planetary bodies, including observations from the Apollo era and the recent Rosetta mission to Comet 67P.

Sounding rocket EVE supports tune-up of SDO EVE instrument

Satellites provide data daily on our own planet, our sun and the universe around us. The instruments on these spacecraft are constantly bombarded with solar particles and intense light, not to mention the normal wear and tear from operating in space.

If it were a car that’s a few years old, you would take it to the mechanic for a tune-up to make sure it continues running smoothly. However, with a spacecraft it’s not that easy. Thus, scientists may turn to calibration flights to make sure the instruments are kept up to snuff and providing validated data.

One such flight will be the Extreme UltraViolet (EUV) Variability Experiment, or EVE, from the University of Colorado, Boulder, to observe the sun from a NASA Black Brant IX sounding rocket at 3:02 p.m. EDT May 25 at the White Sands Missile Range in New Mexico.

The Jet Set: Understanding the plume shooting from a Saturn moon

Planetary scientists are a step closer to understanding changes in the puzzling jets of gas and dust grains observed shooting into space from cracks on the icy surface of Enceladus, a moon of Saturn.

First observed in 2005 by NASA’s Cassini spacecraft as it orbited the ringed planet, the plume is coming from a subterranean, salty ocean beneath the moon’s surface. The latest observations with NASA’s Cassini spacecraft now at Saturn by a team including Larry Esposito, LASP planetary scientist and University of Colorado Boulder professor, indicate at least some of the narrow jets there blast with increased fury when the moon is farther from Saturn.

Cassini Spacecraft Samples Interstellar Dust

NASA’s Cassini spacecraft has detected the faint but distinct signature of dust coming from beyond our solar system. The research, led by a team that includes scientists at the University of Colorado and LASP, will be published in the journal Science on Friday, April 15, 2016.

Cassini has been in orbit around Saturn since 2004, studying the giant planet, its rings, and its moons. The spacecraft has also sampled millions of ice-rich dust grains with its Cosmic Dust Analyzer (CDA) instrument. LASP research scientists Sascha Kempf, Sean Hsu, and Eberhard Grün are all co-investigators for the Cassini CDA instrument and co-authors of the paper.

Student Dust Counter got few “hits” during Pluto flyby

A LASP-led and University of Colorado Boulder student-built instrument riding on NASA’s New Horizons spacecraft found only a handful of dust grains, the building blocks of planets, when it whipped by Pluto at 31,000 miles per hour last July.

Data downloaded and analyzed by the New Horizons team indicated the space environment around Pluto and its moons contained only about six dust particles per cubic mile, said LASP planetary scientist and CU-Boulder Professor Fran Bagenal, who leads the New Horizons Particles and Plasma Team.

“The bottom line is that space is mostly empty,” said Bagenal. “Any debris created when Pluto’s moons were captured or created during impacts has long since been removed by planetary processes.”

LASP-built instrument to study the birthplace of stars and planets

To the casual onlooker, the space between the stars is benign and inactive. However, this space, also called the interstellar medium, is very active and contains the raw materials for future solar systems.

On February 21, 2016, the Colorado High-resolution Echelle Stellar Spectrograph (CHESS) will fly on a NASA suborbital sounding rocket on its second flight in two years to study the atoms and molecules in the interstellar medium.

LASP director elected AIAA Fellow

LASP Director, Dan Baker, has been elected Fellow of the American Institute of Aeronautics and Astronautics (AIAA) for its class of 2016. AIAA Fellows are elected based on their notable and valuable contributions to the arts, sciences or technology of aeronautics and astronautics.

In addition to his role as LASP director, Baker is a faculty member in the departments of Physics and Astrophysical and Planetary Sciences at the University of Colorado Boulder. Baker, who chaired the National Research Council’s 2012 Decadal Survey for Solar and Space Physics, is currently involved in a number of NASA missions, including the MAVEN mission to Mars, the Van Allen Probes mission, and the Magnetospheric Multiscale mission.

AIAA is the largest aerospace professional society in the world, serving a diverse range of more than 30,000 individual members from 88 countries, and 95 corporate members. The induction ceremony for the new Fellows will take place at the AIAA Aerospace Spotlight Awards Gala on June 15, 2016 at the Ronald Reagan Building and International Trade Center in Washington, D.C.

MAVEN Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere

Scientists involved in NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission, which is being led by the LASP team at the University of Colorado Boulder, have identified the process that appears to have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life to the cold, arid planet Mars is today.

MAVEN data have enabled researchers to determine the rate at which the Martian atmosphere currently is losing gas to space via stripping by the solar wind. The findings reveal that the erosion of Mars’ atmosphere increases significantly during solar storms. The scientific results from the mission appear in the Nov. 5 issues of the journals Science and Geophysical Research Letters.

LASP director receives prestigious Shen Kuo award

LASP director Daniel Baker has received the 2015 Shen Kuo Award from the International Association of Geomagnetism and Aeronomy (IAGA), the top award for interdisciplinary achievements given every four years by the organization.

Baker, a University of Colorado Boulder Distinguished Professor, was presented with the award at the 26th General Assembly of the International Union of Geodesy and Geophysics (IUGG) held in Prague in the Czech Republic. IAGA is a constituent organization of IUGG and is dedicated to advancing, promoting and communicating knowledge of the Earth system, its space environment, and the dynamical processes causing change.

Salt flat indicates some of the last vestiges of surface water on Mars, CU-Boulder study finds

Mars turned cold and dry long ago, but LASP-led research at the University of Colorado Boulder has unveiled evidence of an ancient lake that likely represents some of the last potentially habitable surface water ever to exist on the Red Planet.

The study, published Thursday in the journal Geology, examined an 18-square-mile chloride salt deposit (roughly the size of the city of Boulder) in the planet’s Meridiani region near the Mars Opportunity rover’s landing site. As seen on Earth in locations such as Utah’s Bonneville Salt Flats, large-scale salt deposits are considered to be evidence of evaporated bodies of water.

LASP scientist elected AGU fellow

In recognition of his accomplishments and exceptional scientific contributions, LASP research associate W.K. (Bill) Peterson has been elected as a fellow of the American Geophysical Union (AGU). Peterson is being recognized by his peers in the scientific community for his outstanding work in Earth and space sciences with an honor that is bestowed upon no more than 0.1% of the AGU membership annually.

MAVEN Results Find Mars Behaving Like a Rock Star

If planets had personalities, Mars would be a rock star according to recent preliminary results from NASA’s MAVEN spacecraft. Mars sports a “Mohawk” of escaping atmospheric particles at its poles, “wears” a layer of metal particles high in its atmosphere, and lights up with aurora after being smacked by solar storms. MAVEN is also mapping out the escaping atmospheric particles. The early results are being discussed at a MAVEN-sponsored “new media” workshop held in Berkeley, California, on June 19-21.

Moon engulfed in permanent, lopsided dust cloud

The moon is engulfed in a permanent but lopsided dust cloud that increases in density when annual events like the Geminids spew shooting stars, according to a new study led by LASP scientists at the University of Colorado Boulder.

The cloud is made up primarily of tiny dust grains kicked up from the moon’s surface by the impact of high-speed, interplanetary dust particles, said CU-Boulder physics Professor and LASP research associate Mihály Horányi. A single dust particle from a comet striking the moon’s surface lofts thousands of smaller dust specks into the airless environment, and the lunar cloud is maintained by regular impacts from such particles, said Horányi.

New Horizons in Astronomy

By Fran Bagenal, CU-Boulder Professor of Astrophysical and Planetary Sciences and New Horizons co-investigator

I admit that I love giving presentations on New Horizons to public audiences. It’s the killer combination of Pluto and space exploration. Everyone digs it. The best are astronomy clubs—just bursting with enthusiasm. And my favorite group of all time is the Rocky Mountain Star Stare (RMSS). Based in Colorado Springs, RMSS meets every year on a piece of land close to the Colorado–New Mexico border that is far from city lights. The trek is worth it—the Milky Way blazes across the sky.And these guys have brought along the most amazing astro-geek equipment.

LASP instrument selected for NASA mission to Europa

An instrument to be designed and built at LASP has been selected to fly on a NASA mission to Jupiter’s icy moon, Europa, which is believed to harbor a subsurface ocean that may provide conditions suitable for life.

The LASP instrument, known as the SUrface Dust Mass Analyzer (SUDA), will be used to measure the composition of solid particles released from Europa’s surface due to meteoroid bombardment. The instrument also will be able to measure the properties of small, solid particles believed to be spewing from a hidden ocean within the moon, said University of Colorado Boulder Assistant Professor of Physics, Sascha Kempf, who will serve as principal investigator on the project.

PRESS RELEASE: United Arab Emirates to partner with CU-Boulder on 2021 Mars mission

A mission to study dynamic changes in the atmosphere of Mars over days and seasons led by the United Arab Emirates (UAE) involves the University of Colorado Boulder as the leading U.S. scientific-academic partner.

Known as the Emirates Mars Mission, the project is being designed to observe weather phenomena like Martian clouds and dust storms as well as changes in temperature, water vapor and other and gases throughout the layers of the atmosphere. The CU-Boulder part of the mission will be undertaken at LASP.

The mission will be headquartered at and controlled from the Mohammed bin Rashid Space Centre in Dubai, which is affiliated with the Emirates Institution for Advanced Science and Technology. According to Sheikh Mohammed bin Rashid, Vice President and Prime Minister of Dubai, the new Mars probe will be named Hope.

CU-Boulder hitches a ride to space on commercial satellite

The University of Colorado announced today that it has awarded a five-year contract to SES Government Solutions (SES GS), of Reston, Va., to host a NASA-funded science instrument on board SES-14, a communications satellite to be stationed over the Americas.

The Global-Scale Observations of the Limb and Disk (GOLD) mission, a NASA Explorers mission led from the University of Central Florida and built and operated at the University of Colorado (CU-Boulder), will collaborate with SES GS to place a science instrument on a commercial satellite as a hosted payload. This is the first time a university and a commercial spacecraft operator have teamed to host a NASA science mission. At a cost of roughly 10% of a traditional science satellite, working with a communications satellite represents the most cost-effective way to reach geostationary orbit.

After successful mission to Mercury, spacecraft on a crash course with history

NASA’s MESSENGER mission to Mercury, carrying an instrument designed and built at LASP, is slated to run out of fuel and crash into the planet in the coming days after a wildly successful, four-year orbiting mission chock-full of discoveries.

The mission began in 2004, when the MESSENGER spacecraft launched from Florida on a 7-year, 4.7 billion mile journey that involved 15 loops around the sun before the spacecraft settled into orbit around Mercury in March 2011. LASP provided the Mercury Atmospheric and Surface Composition Spectrometer (MASCS), which has been successfully making measurements of Mercury’s surface and its tenuous atmosphere, called the exosphere, since orbit insertion.

LASP Director Awarded Sarabhai Professorship and Prize

LASP Director and University of Colorado Boulder Distinguished Professor, Daniel Baker, was awarded the Vikram A. Sarabhai Professorship and Prize for 2015, which honors internationally distinguished scholars and is named for the founder of India’s space program.

As part of the award, Baker traveled to the Physical Research Laboratory (PRL) in Ahmedabad, Gujarat, India, in February to work with scientists and students and give seminars and lectures. His primary research interests include the study of physical and energetic particle phenomena in the plasma of planetary magnetospheres.

PRESS RELEASE: GOLD Approved for Final Design and Fabrication

The Global-scale Observations of the Limb and Disk (GOLD) mission, part of the NASA Explorers Program, passed a rigorous examination on March 5th at the Goddard Space Flight Center in Maryland, enabling the mission to move into the final design and fabrication phase.

MMS launches to study magnetic reconnection

Following a successful launch at 8:44 p.m. MDT Thursday, NASA’s four Magnetospheric Multiscale (MMS) spacecraft are positioned in Earth’s orbit to begin the first space mission dedicated to the study of a phenomenon called magnetic reconnection. This process is thought to be the catalyst for some of the most powerful explosions in our solar system.

The spacecraft, positioned one on top of the other on a United Launch Alliance Atlas V-421 rocket, launched from Cape Canaveral Air Force Station in Florida. After reaching orbit, each spacecraft deployed from the rocket’s upper stage sequentially, in five-minute increments, beginning at 10:16 p.m., with the last separation occurring at 10:32 p.m. NASA scientists and engineers were able to confirm the health of all separated spacecraft at 10:40 p.m.

Comprised of four identical, octagonal spacecraft flying in a pyramid formation, the MMS mission is designed to better understand the physical processes of geomagnetic storms, solar flares, and other energetic phenomena throughout the universe.

PRESS RELEASE: Saturn Moon’s Ocean May Have Hydrothermal Activity

Scientists with NASA’s Cassini mission, led by LASP and University of Colorado postdoctoral researcher, Sean Hsu, have found that microscopic grains of rock detected near Saturn imply hydrothermal activity is taking place within the moon Enceladus.

This is the first clear indication of an icy moon having hydrothermal activity—in which seawater infiltrates and reacts with a rocky crust, emerging as a heated, mineral-laden solution. The finding adds to the tantalizing possibility that Enceladus, which displays remarkable geologic activity including geysers, could contain environments suitable for living organisms.

The results were published today in the journal Nature.

LASP brings New Horizons science to rural Colorado communities

After a decade-long voyage through the solar system, NASA’s New Horizons mission is scheduled to fly by Pluto in July 2015, carrying with it the LASP-built Student Dust Counter (SDC). The New Horizons mission also involves LASP scientists and CU-Boulder students, who await data from the unprecedented approach and close encounter of the dwarf planet and its five known moons.

In preparation for the July encounter, LASP Office of Communications and Outreach staff recently traveled to two rural Colorado communities and delivered Pluto-related programming to students and their families. Accompanying them was Fran Bagenal, LASP planetary scientist, CU-Boulder professor of astrophysical and planetary sciences, and New Horizons mission co-investigator. Bagenal served as the New Horizons and Pluto science expert during the school visits and gave public presentations to both communities.

CU-Boulder students to help control instruments on MMS from LASP

LASP will serve as the Science Operations Center for a NASA mission launching this month to better understand the physical processes of geomagnetic storms, solar flares and other energetic phenomena throughout the universe.

The $1.1 billion Magnetospheric Multiscale (MMS) mission will be comprised of four identical, octagonal spacecraft flying in a pyramid formation, each carrying 25 instruments. The goal is to study in detail magnetic reconnection, the primary process by which energy is transferred from the solar wind to Earth’s protective magnetic space environment known as the magnetosphere, said LASP Director Daniel Baker, Science Operations Center (SOC) lead scientist for MMS.

LASP-built instrument on New Horizons readies for Pluto encounter

When NASA’s napping New Horizon’s spacecraft awakens later this week in preparation for its July 2015 encounter with Pluto, a University of Colorado Boulder student instrument onboard already will have been up for years.

The instrument, the Student Dust Counter (SDC), was designed and built to detect dust both on the interplanetary journey to Pluto and beyond, said CU-Boulder physics Professor and LASP research scientist Mihaly Horanyi, principal investigator on the effort. The SDC has been on for most of the mission—even as the other instruments primarily napped—measuring dust grains that are the building blocks of the solar system’s planets, he said.

LASP Director receives University of Colorado Distinguished Professor Award

Laboratory for Atmospheric and Space Physics (LASP) Director, Dan Baker, was appointed a University of Colorado Distinguished Professor at a Board of Regents meeting on November 20th. Baker is one of six faculty members within the four university campuses to receive the award this year and takes a place among the 79 faculty members who have earned this distinction since its inception in 1977. Nominations for the award were made by a committee of current Distinguished Professors, reviewed by university president, Bruce Benson, and voted for approval by the Board of Regents.

Selection criteria are based on outstanding contributions of university faculty members to their academic disciplines, including creativity and research, teaching or supervision of student learning, and service to the university and affiliated institutions. Baker, director of LASP for two decades, was recognized for his leadership in the space science community and influence on space policy at the federal level. Baker was also lauded for enabling hundreds of undergraduate and graduate students to conduct authentic research at the lab.

Mars spacecraft, including MAVEN, reveal comet flyby effects on Martian atmosphere

Two NASA and one European spacecraft, including NASA’s MAVEN mission—led by LASP—have gathered new information about the basic properties of a wayward comet that buzzed by Mars Oct. 19, directly detecting its effects on the Martian atmosphere.

Data from observations carried out by MAVEN, NASA’s Mars Reconnaissance Orbiter (MRO) and the European Space Agency’s Mars Express spacecraft revealed that debris from the comet, known officially as Comet C/2013 A1 Siding Spring, caused an intense meteor shower and added a new layer of ions, or charged particles, to the ionosphere. The ionosphere is an electrically charged region in the atmosphere that reaches from about 75 miles (120 kilometers) to several hundred miles above the Martian surface.

Using the observations, scientists were able to make a direct connection between the input of debris from the meteor shower to the subsequent formation of the transient layer of ions—the first time such an event has been observed on any planet, including Earth, said the MAVEN research team.

MAVEN spacecraft’s first look at Mars holds surprises

NASA’s MAVEN spacecraft has provided scientists their first look at a storm of energetic solar particles at Mars and produced unprecedented ultraviolet images of the tenuous oxygen, hydrogen and carbon coronas surrounding the Red Planet, said LASP Associate Director for Science and University of Colorado Boulder Professor Bruce Jakosky, the mission’s principal investigator.

In addition, the new observations allowed scientists to make a comprehensive map of highly variable ozone in the Martian atmosphere underlying the coronas, he said. The spacecraft entered Mars’ orbit Sept. 21 and is in the process of lowering its orbit and testing its instruments. The $671 million Mars Atmosphere and Volatile EvolutioN mission, or MAVEN, was launched toward Mars on Nov. 18, 2013, to help solve the mystery of how the Red Planet lost most of its atmosphere.

NASA Shares What MAVEN Spacecraft Has Seen in its First Few Weeks at Mars

NASA will host a news teleconference at 2 p.m. EDT Tuesday, Oct. 14, to announce early science results from the LASP-led Mars Atmosphere and Volatile Evolution (MAVEN) mission.

Launched in November 2013, the spacecraft entered orbit around Mars on Sept. 21 completing an interplanetary journey of 10 months and 442 million miles (711 million kilometers). MAVEN is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere to help scientists understand climate change over the Red Planet’s history.

LASP researchers to study origins, evolution of life in universe

NASA has awarded a team led by the University of Colorado Boulder, which includes LASP scientists, more than $7 million to study aspects of the origins, evolution, distribution and future of life in the universe.

The team, led by CU-Boulder Professor Alexis Templeton of the geological sciences department, will be researching what scientists call “rock-powered life.” Rocky planets store enormous amounts of chemical energy, that, when released through the interaction of rocks and water, have the ability to power living systems on Earth as well as on other planets like Mars, said Templeton, principal investigator on the effort.

New Earth-Observing Instrument Makes Successful Balloon Flight

In New Mexico on the morning of Aug. 18, a high-altitude balloon successfully carried the HyperSpectral Imager for Climate Science (HySICS) instrument to an altitude of 123,000 feet, above most of the Earth’s atmosphere, to reach space-like conditions and demonstrate new technologies for acquiring high-accuracy science measurements of the Earth.

Scientists use outgoing shortwave radiance, or the amount of sunlight scattered from Earth’s surface and atmosphere and reflected back toward space, as one of the key metrics for studying our planet’s dynamic climate. Watching these radiances over time helps researchers monitor and better understand the causes of environmental changes and global warming.

LASP-led Mars mission set for orbit insertion on Sept. 21

A NASA mission to Mars led by LASP is set to slide into orbit around the red planet on Sept. 21 to investigate how its climate has changed over the eons, completing a 10-month interplanetary journey of 442 million miles.

The orbit-insertion maneuver will begin with six thruster engines firing to shed some of the velocity from the spacecraft, known as the Mars Atmosphere and Volatile EvolutioN, or MAVEN mission. The thruster engines will ignite and burn for 33 minutes to slow the spacecraft, allowing it to be captured into an elliptical orbit around Mars.

Colorado aerospace leaders host program on MAVEN and Mars exploration

The importance of Mars exploration and how the aerospace industry partners with university researchers to advance one of Colorado’s leading economic sectors will be featured at a free program Monday, Sept. 8, in south Denver.

Aerospace leaders will discuss the importance of Mars exploration and the role of the Mars Atmosphere and Volatile EvolutioN, or MAVEN mission, the involvement of Colorado companies in space exploration and the value of public/private partnerships involving university-based research. Speakers will include Jim Green, director of NASA planetary science; Nick Schneider, MAVEN co-investigator and professor in the CU-Boulder Department of Astrophysical and Planetary Sciences; Guy Beutelschies, space exploration systems director, Lockheed Martin; Jim Sponnick, vice president of Atlas and Delta programs, United Launch Alliance; and Patrick Carr, vice president and general manager of command, control and communications systems, Exelis.

Latest CubeSat project strengthens partnership with aerospace industry

A NASA-funded miniature satellite built by University of Colorado Boulder students to scrutinize solar flares erupting from the sun’s surface is the latest example of the university’s commitment to advancing aerospace technology and space science through strong partnerships with industry and government.

The $1 million Miniature X-ray Solar Spectrometer (MinXSS), led by CU-Boulder faculty in the Laboratory for Atmospheric and Space Physics and the Department of Aerospace Engineering Sciences, recently was selected by NASA for launch in January 2015 from the International Space Station.

Kepler receives two-year extension for K2 mission

Based on a recommendation from NASA’s 2014 Senior Review of its operating missions, the planet hunting Kepler space telescope has received a two-year extension to operate in a new two-wheel mode.

The approval allows the K2 mission to continue exoplanet discovery using two of its four original reaction wheels, and introduces new scientific observation opportunities to observe notable star clusters, young and old stars, active galaxies and supernovae.

LASP instrument aboard NASA lunar mission set to impact moon

At the conclusion of a highly successful 130-day mission, the NASA Lunar Atmosphere and Dust Environment Explorer (LADEE) is planned to impact the surface of the moon on April 21, 2014. LADEE carries the Lunar Dust Experiment (LDEX), which is the latest in a series of dust detectors designed and built at LASP.

New study shows citizens count lunar craters on par with professionals

A new study led by LASP research scientist Stuart Robbins indicates that volunteer “citizen scientists” counted lunar craters at rates comparable to professional scientists. Using images from NASA’s Lunar Reconnaissance Orbiter, volunteers for CosmoQuest, which contributes real science data to NASA missions, analyzed the high-resolution photos of the Moon for impact craters. Robbins and his co-authors then compared the volunteers’ results to those of eight professional planetary crater-counters.

MAVEN on Track to Carry Out its Science Mission

The MAVEN spacecraft and all of its science instruments have completed their initial checkout, and all of them are working as expected. This means that MAVEN is on track to carry out its full science mission as originally planned.

The mission is designed to explore Mars’ upper atmosphere. It will determine the role that escape of gas from the atmosphere to space has played in changing the climate throughout the planet’s history. MAVEN was launched on November 18, 2013, and will go into orbit around Mars on the evening of Sept. 21, 2014 (10 p.m. EDT).

After a 5-week commissioning phase in orbit, during which it will get into its science-mapping orbit, deploy its booms, and do a final checkout of the science instruments, it will carry out a one-Earth-year mission. It will observe the structure and composition of the upper atmosphere, determine the rate of escape of gas to space today and the processes controlling it, and make measurements that will allow it to determine the total amount of gas lost to space over time.

Lunar mission with LASP instrument receives extension

NASA has approved a 28-day mission extension for the Lunar Atmosphere and Dust Environment Explorer (LADEE). LASP provided the Lunar Dust Experiment (LDEX) onboard the satellite, which launched on September 6, 2013 and is now expected to impact the surface of the moon in late April 2014.

Due to accurate and efficient propulsion and guidance over the course of the mission to date, the spacecraft has more fuel remaining than mission operators originally expected. The extra propellant will provide an opportunity for LADEE to gather an additional full lunar cycle worth of very low-altitude data to help scientists unravel the mysteries of the moon’s tenuous atmosphere and dust environment.

LASP celebrates a year of exploration, discovery, and accomplishments

As 2013 draws to a close, it is amazing to reflect on all of LASP’s accomplishments in its 65th year! The last four months of the year were punctuated by launches to the moon, and Earth and Mars orbits for the LDEX, TCTE, and MAVEN instruments that LASP designed, built, and now operates.

MAVEN launched to study upper atmosphere of Mars

A LASP-led mission that will investigate how Mars lost its atmosphere and abundant liquid water launched into space on November 18 at 11:28 a.m. MST from Cape Canaveral Air Force Station in Florida.

The Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft separated from an Atlas V Centaur rocket’s second stage 53 minutes after launch. The solar arrays deployed approximately one hour after launch and currently power the spacecraft. MAVEN now is embarking on a 10-month interplanetary cruise before arriving at Mars next September.

Get involved: MAVEN blast-off to Mars!

MAVEN is set to launch aboard a United Launch Alliance Atlas V 401 rocket Nov. 18. The two-hour launch window extends from 1:28 to 3:28 p.m. EST. Liftoff will occur from Cape Canaveral Air Force Station’s Space Launch Complex 41.

Launch commentary coverage, as well as prelaunch media briefings, will be carried live on NASA Television and the agency’s website.

The following is a list of MAVEN launch-related briefings, events, and activities.

LASP Public Lecture kicks off year of celebration

LASP kicks off a special year-long Public Lecture series to honor our 65th anniversary on October 11, 2013.  Please join us! Speaker: Dr. Sam Durrance Date: Friday, October 11, 2013 Time: 6:00 PM; doors open for a reception at 5:15 PM Location: LSTB-A200 (map) Abstract: Riding a rocket into space, the exhilaration of zero-g, the… Read more »

LASP balloon launches with first-of-its-kind test instrument

On Sept. 29, 2013, a scientific balloon launched from the Columbia Scientific Balloon Facility in Fort Sumner, NM, flying an instrument that scientists hope will eventually establish a new long-term benchmark data set pertaining to climate change on the Earth.

The instrument, funded by a $4.7 million NASA Earth Science Technology Office Instrument Incubator Program contract, is intended to acquire extremely accurate radiometric measurements of Earth relative to the incident sunlight. Over time, such measurements can tell scientists about changes in land-use, vegetation, urban landscape use, and atmospheric conditions on our planet. Such long-term radiometric measurements from the HyperSpectral Imager for Climate Science (HySICS) instrument can then help scientists identify the drivers of climate change.

MAVEN haiku selected for travel to Mars

Haiku recognized in the LASP-led MAVEN message-to-Mars contest were announced today on the Going to Mars campaign website. Haiku authors from around the world—including Palestine, India, Australia, and Europe—entered the contest. The top five winners—all those whose haiku received 1,000 votes or more—include popular British blogger Benedict Smith and well-known American poet Vanna Bonta. Other entries receiving special recognition include MAVEN team selections in categories ranging from haiku specifically about MAVEN to humorous haiku.

MAVEN arrives in Florida for launch preparations

The LASP-led Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has arrived in Florida to begin final preparations for launch this November. The spacecraft was shipped from Lockheed Martin Space Systems in Littleton, Colo., to the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center on Friday.

LASP instrument reveals a particle accelerator in near-Earth space

LASP director and research scientist Dan Baker is co-author of new research that indicates that a massive particle accelerator exists in the Van Allen radiation belts, a harsh band of super-energetic, charged particles surrounding our planet. The results were published in Science magazine today.

Public voting opens on MAVEN haiku contest

The LASP-led MAVEN Going to Mars campaign has opened public voting on submissions to the message to Mars contest. Messages are in the form of three-line poems called haiku. The public will select the top three haiku via open voting on an online interface. Winning haiku will be announced on the MAVEN website on August… Read more »

Study shows how early Earth could support life

A new study by LASP research scientist Brian Toon and doctoral student Eric Wolf indicates that explaining Earth’s early conditions, which were warm enough to support life despite a 20-percent dimmer Sun, may be simpler than believed. The study,  published in the July issue of Astrobiology, indicates that the Archean eon, 2.8 billion years ago,… Read more »

MAVEN Student Art Contest Winner Announced

The winner of the LASP-run MAVEN student art contest turns out be the work of more than a single young person. The First Place entry, selected by online public vote, was the work of a Colorado-based Kindergarten Enrichment class.

LASP-built space weather instrument ready for delivery

A multimillion dollar LASP instrument package to study space weather has passed its pre-installation testing and is ready to be incorporated onto a National Oceanic and Atmospheric Administration satellite for a 2015 launch.

Send Your Name and Message to Mars with MAVEN

The MAVEN mission is inviting people from all over the world to submit their names and a unique message online. Participants’ names and the top-voted messages will be burned to a specially-designed DVD and sent to the Red Planet aboard the MAVEN spacecraft, scheduled to launch in November, 2013.

PRESS RELEASE: LASP will partner on NASA mission to study Earth’s upper atmosphere

NASA has announced that LASP will collaborate on a $55 million project to build and launch an instrument to provide unprecedented imaging of the Earth’s upper atmosphere from a geostationary orbit.

The kind of information the Global-scale Observations of the Limb and Disk (GOLD) mission will collect will have a direct impact on man’s understanding of space weather and its impact on communication and navigation satellites.

Get Going to Mars!

Members of the worldwide public are invited to participate in NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) mission through a new Education & Public Outreach (E/PO) effort called the Going to Mars campaign. MAVEN, which is the first mission devoted to understanding the Martian upper atmosphere, has a robust E/PO program designed to engage a variety of audiences in the mission.

Local students send a bit of dessert into the atmosphere

A group of Longmont middle school students successfully sent a scientific balloon carrying edible treats into the sky last Saturday as an atmospheric physics experiment. Guided by LASP scientists and education/outreach staff, the Trail Ridge Middle School eighth grade Earth Explorers class launched a balloon platform carrying a container of Jell-O and a marshmallow into… Read more »

Kepler mission extended through 2016

NASA has extended the Kepler mission through fiscal year 2016, adding four years to Kepler’s search for Earth-like planets in the Milky Way galaxy and allowing LASP to continue our work operating the spacecraft. A team of 20 University of Colorado students and 16 LASP professionals control the Kepler spacecraft from the LASP Mission Operations… Read more »

Kepler team wins top space program award

The NASA Kepler Mission won the highest honor for space programs at the 2012 Aviation Week Laureate Awards on March 7 in Washington, D.C. Students and professionals in the LASP Mission Operations Center control the Kepler spacecraft, which is surveying our region of the Milky Way galaxy for Earth-like planets. The Laureate Awards recognize individuals… Read more »

Student-built satellite delivered to California for upcoming launch

CU-Boulder students, working under the guidance of LASP scientists and engineers, have finished building a satellite to study space weather and have sent it to California Polytechnic Institute to begin integration with launch vehicle systems. More than 50 graduate and undergraduate students have contributed to designing and building the Colorado Student Space Weather Experiment (CSSWE), an $840,000 CubeSat mission funded by the National Science Foundation. The satellite is scheduled to launch into low-Earth polar orbit in early August 2012 as a secondary payload under NASA’s Educational Launch of Nanosatellites (ELaNa) program.

LASP scientists elected as AGU fellows

In recognition of their accomplishments and exceptional scientific contributions, two LASP scientists have been elected as fellows of the American Geophysical Union (AGU). Bruce Jakosky and Cora Randall have been recognized by their peers for their outstanding work in Earth and space sciences with an honor that is bestowed upon not more than 0.1% of the AGU membership annually.

Students use Student Dust Counter data to improve understanding of space dust

Using data from the NASA New Horizons mission to Pluto, LASP scientists have made new measurements of interplanetary dust density. The data, collected from the CU-Boulder student-built Student Dust Counter (SDC) and the meteoroid detector on the Pioneer 10 spacecraft, represent measurements of the micro-sized dust grains from the Earth out to the present position of the SDC, at approximately 20 Astronomical Units (AU). One AU is equal to the average distance from the Sun to the Earth, or approximately 93 million miles (149.5 million km).

Early Earth may have been prone to deep freezes

New research led by LASP scientist Brian Toon uses a three-dimensional (3-D) model of Earth’s climate to assess the role of various factors in influencing historic global temperatures and resulting sea ice formation and change. Toon, along with doctoral student Eric Wolf, adapted the 3-D model to incorporate the complex and dynamic interactions between the atmosphere, cloud formation, energy radiation, land and ice cover, and the hydrological cycle to demonstrate how the Earth maintained a global mean temperature hospitable to life. The model attempts to solve the “faint young sun paradox” of the Archean Eon—from about 3.8 billion to 2.5 billion years ago—when the Sun was up to 30 percent less active, but geologic evidence points to a climate as warm or warmer than today.

As Voyager 1 nears edge of Solar System, CU scientists look back

In 1977, Jimmy Carter was sworn in as president, Elvis died, Virginia park ranger Roy Sullivan was hit by lightning a record seventh time and two NASA space probes destined to turn planetary science on its head launched from Cape Canaveral, Fla. The identical spacecraft, Voyager 1 and Voyager 2, were launched in the summer and programmed to pass by Jupiter and Saturn on different paths. Voyager 2 went on to visit Uranus and Neptune, completing the “Grand Tour of the Solar System,” perhaps the most exciting interplanetary mission ever flown. University of Colorado Boulder scientists, who designed and built identical instruments for Voyager 1 and Voyager 2, were as stunned as anyone when the spacecraft began sending back data to Earth.

LASP scientist successfully models Saturn dust streams

Using data from the NASA Cassini mission, a team of scientists led by LASP researcher Sean Hsu, has successfully modeled dust streams being expelled from Saturn at speeds of more than 62 miles (100 km) per second. The data, taken from the Cosmic Dust Analyzer (CDA) and the magnetometer on board Cassini, provide new information about the sources of the dust, as well as interactions within the mix of subatomic particles in which the charged dust is immersed, called dusty plasma.

LASP Director to lead AGU workshop on space weather

As part of the upcoming American Geophysical Union Fall Meeting in San Francisco, LASP director, Dan Baker, will serve as a panelist for a workshop on space weather. The workshop, titled, “Getting Ready for Solar Max: Separating Space Weather Fact from Fiction,” will be held on Tuesday, December 6, at 10 a.m. PT. Baker will begin the workshop with an overview of our current understanding of the Sun-Earth system, including solar variability and its interaction with Earth’s magnetosphere.

LASP move eases crowding and supports collaboration

LASP Science Division personnel are moving to a new location on the CU Research Campus beginning October 14. According to LASP Director, Dan Baker, the benefits of the move are two-fold. Baker said, “LASP is a growing presence on campus. We are excited by the opportunity to expand our physical space to better address our current needs, while consolidating our science staff for more fluid collaboration.”

LASP researcher leads study on migration of Mars volcanic activity

LASP scientist and CU-Boulder Department of Geological Sciences Assistant Professor, Brian Hynek, led a recent study detailing the earliest history of the development of the Tharsis volcanoes on Mars. The Tharsis region, one of the most prominent features on Mars, covers one quarter of the planet, rises 10 km above the surrounding flatlands, and has had near-continuous volcanic activity for roughly 4 billion years.

LASP scientist receives Humboldt Research Award

In recognition of his accomplishments and groundbreaking insights in the field of atmospheric science, LASP scientist and CU-Boulder Professor Peter Pilewskie has been named a recipient of the prestigious Humboldt Research Award. Pilewskie has been at LASP since 2004, where he performs research on the effects of clouds and aerosols on solar energy in the Earth’s atmosphere. He is also a professor in the Department of Atmospheric & Oceanic Sciences and serves as the director of the collaborative LASP/NASA Goddard Sun-Climate Research Center.

PRESS RELEASE: MAVEN Mission Primary Structure Complete

NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has achieved another significant milestone on its way towards launch in November 2013. Lockheed Martin has completed building the primary structure of the MAVEN spacecraft at its Space Systems Company facility near Denver.

UARS satellite carrying LASP-built instrument set for re-entry

NASA’s Upper Atmosphere Research Satellite (UARS), launched in September 1991 and deployed from the Space Shuttle Discovery (STS-48), is re-entering Earth’s atmosphere and will complete its decent on Friday, September 23. LASP designed and built the Solar Stellar Irradiance Comparison Experiment (SOLSTICE) on board UARS and operated the instrument after launch. Throughout 14 years of successful operations, SOLSTICE made precise measurements of the Sun’s ultraviolet and far ultraviolet spectral irradiance.

LASP celebrates 15 years of continuous spacecraft operations

September 2011 marks a significant milestone for LASP, as our Mission Operations and Data Systems (MODS) team celebrates 15 years of continuous spacecraft operations. From long-standing science missions, such as ICESat, which have brought in important data over years—to newer missions, such as Kepler’s exciting search for Earth-like planets—LASP MODS has offered reliable spacecraft operations to agencies including NASA.

LASP scientists, instrument responsible for new solar flare discovery

The Sun is the dominant source of energy for Earth’s atmosphere. Scientists are interested in determining how the Sun’s output affects Earth’s climate and the ways specific events can disrupt space weather applications, space-based technologies, and radio communications. New observations of solar extreme ultraviolet (EUV) irradiance from the LASP-designed and built EUV Variability Experiment (EVE) on NASA’s Solar Dynamics Observatory (SDO) are adding another piece to this complicated puzzle that may help scientists more accurately predict space weather events.

LASP scientist awarded American Geophysical Union Revelle Medal

In recognition of his innovative work on the effects of aerosols on clouds and climate, the American Geophysical Union (AGU) has awarded LASP scientist Brian Toon the 2011 Revelle Medal. Toon has been at LASP since 1997, where his research is focused on radiative transfer, cloud physics, and atmospheric chemistry as well as the search for parallels between the Earth and the terrestrial planets.

LASP scientists instrumental in mission to Jupiter

Several LASP scientists are involved in NASA’s upcoming Juno mission to Jupiter. Scheduled to launch on August 5, 2011, the mission will improve understanding of our solar system origins by revealing details about the formation and evolution of the gas giant. The spacecraft will embark on a five-year, 400-million-mile voyage to Jupiter, where it will orbit the planet 33 times, collecting data for more than one Earth year.

PRESS RELEASE: LASP-led mission to Mars achieves major milestone

The CU/LASP-led mission to Mars, devoted to understanding the Martian upper atmosphere, reached a major milestone last week when it successfully completed its Mission Critical Design Review (CDR) at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. An independent review board, comprised of reviewers from NASA and several external organizations, met from July 11-15 to validate the system design of the Mars Atmosphere and Volatile Evolution, or MAVEN, mission.

Study finds strong evidence for salt-water ocean on Saturn moon

A study published in the journal Nature and co-authored by LASP scientist Sascha Kempf indicates that samples of water vapor and ice particles coming from Saturn’s icy moon Enceladus demonstrate evidence for a large, subterranean salt-water reservoir. The Cosmic Dust Analyzer (CDA) on board the NASA Cassini spacecraft measured the composition of plumes—emanating from fractures called tiger stripes—and found that ice grains close to the moon are salt rich, unlike those that make up the planet’s E Ring.

CU-Boulder students build NSF satellite to study space weather

LASP/CU-Boulder students are designing and building a satellite that will study space weather—changes in near-Earth space conditions that adversely affect Earth-orbiting spacecraft and communication technologies. The Colorado Student Space Weather Experiment (CSSWE) is an $840,000 CubeSat mission funded by the National Science Foundation. CSSWE is scheduled to launch into low-Earth polar orbit in June 2012 as a secondary payload under NASA’s Educational Launch of Nanosatellites (ELaNa) program.

New video features Student Dust Counter and team members

A new video that introduces the unique story of LASP student involvement in a NASA satellite instrument is now available. The video features students involved in the design, production, and operation of the Venetia Burney Student Dust Counter (SDC), an instrument aboard the NASA New Horizons mission to Pluto. Under the supervision of professional education staff, LASP undergraduate student Alex Thom compiled the video from archived mission footage and interviews.

Low solar energy not solely behind Little Ice Age

A study published in Geophysical Research Letters and co-authored by LASP scientist Tom Woods has found that total solar irradiance (TSI)—a measure of the Sun’s energy output—may not be as low during the Little Ice Age as previously understood. Low total solar irradiance has been thought to be a cause of the Little Ice Age, a time in the 17th Century coinciding with a period of unusually low sunspot activity known as the Maunder Minimum.

PRESS RELEASE: LASP one of several CO labs that together inject jobs and $1.5B into state economy

Federally funded laboratories in Colorado, a group that includes LASP, contributed $1.5 billion to the state economy in fiscal year 2010 and accounted for more than 16,000 direct and indirect jobs, a new survey shows. The study, Impact of Federal Research Laboratories in Colorado, 2009-2010, was done at the behest of CO‐LABS, a consortium of… Read more »

MESSENGER mission enters orbit around Mercury

At approximately 7 p.m. MT on Thursday, March 17, after more than six and a half years and a nearly 5 billion mile journey, NASA’s MESSENGER mission became the first spacecraft to enter into orbit around the planet Mercury.