Posts Tagged: Earth’s Climate

Study shows how early Earth could support life

A new study by LASP research scientist Brian Toon and doctoral student Eric Wolf indicates that explaining Earth’s early conditions, which were warm enough to support life despite a 20-percent dimmer Sun, may be simpler than believed. The study,  published in the July issue of Astrobiology, indicates that the Archean eon, 2.8 billion years ago,… Read more »

LASP-built space weather instrument ready for delivery

A multimillion dollar LASP instrument package to study space weather has passed its pre-installation testing and is ready to be incorporated onto a National Oceanic and Atmospheric Administration satellite for a 2015 launch.

PRESS RELEASE: LASP will partner on NASA mission to study Earth’s upper atmosphere

NASA has announced that LASP will collaborate on a $55 million project to build and launch an instrument to provide unprecedented imaging of the Earth’s upper atmosphere from a geostationary orbit.

The kind of information the Global-scale Observations of the Limb and Disk (GOLD) mission will collect will have a direct impact on man’s understanding of space weather and its impact on communication and navigation satellites.

LASP scientists elected as AGU fellows

In recognition of their accomplishments and exceptional scientific contributions, two LASP scientists have been elected as fellows of the American Geophysical Union (AGU). Bruce Jakosky and Cora Randall have been recognized by their peers for their outstanding work in Earth and space sciences with an honor that is bestowed upon not more than 0.1% of the AGU membership annually.

Early Earth may have been prone to deep freezes

New research led by LASP scientist Brian Toon uses a three-dimensional (3-D) model of Earth’s climate to assess the role of various factors in influencing historic global temperatures and resulting sea ice formation and change. Toon, along with doctoral student Eric Wolf, adapted the 3-D model to incorporate the complex and dynamic interactions between the atmosphere, cloud formation, energy radiation, land and ice cover, and the hydrological cycle to demonstrate how the Earth maintained a global mean temperature hospitable to life. The model attempts to solve the “faint young sun paradox” of the Archean Eon—from about 3.8 billion to 2.5 billion years ago—when the Sun was up to 30 percent less active, but geologic evidence points to a climate as warm or warmer than today.

LASP scientist receives Humboldt Research Award

In recognition of his accomplishments and groundbreaking insights in the field of atmospheric science, LASP scientist and CU-Boulder Professor Peter Pilewskie has been named a recipient of the prestigious Humboldt Research Award. Pilewskie has been at LASP since 2004, where he performs research on the effects of clouds and aerosols on solar energy in the Earth’s atmosphere. He is also a professor in the Department of Atmospheric & Oceanic Sciences and serves as the director of the collaborative LASP/NASA Goddard Sun-Climate Research Center.

UARS satellite carrying LASP-built instrument set for re-entry

NASA’s Upper Atmosphere Research Satellite (UARS), launched in September 1991 and deployed from the Space Shuttle Discovery (STS-48), is re-entering Earth’s atmosphere and will complete its decent on Friday, September 23. LASP designed and built the Solar Stellar Irradiance Comparison Experiment (SOLSTICE) on board UARS and operated the instrument after launch. Throughout 14 years of successful operations, SOLSTICE made precise measurements of the Sun’s ultraviolet and far ultraviolet spectral irradiance.

LASP scientist awarded American Geophysical Union Revelle Medal

In recognition of his innovative work on the effects of aerosols on clouds and climate, the American Geophysical Union (AGU) has awarded LASP scientist Brian Toon the 2011 Revelle Medal. Toon has been at LASP since 1997, where his research is focused on radiative transfer, cloud physics, and atmospheric chemistry as well as the search for parallels between the Earth and the terrestrial planets.

Glory satellite, carrying LASP-built instrument, fails to reach orbit

NASA’s Glory mission failed to reach orbit due to a failure of the Taurus XL rocket’s fairing to separate. The Glory satellite was designed to help scientists determine how much energy from the sun reaches Earth and how solar variability influences Earth’s long-term climate. Designed and built at LASP, the Total Irradiance Monitor (TIM) instrument on board, was aimed at measuring the intensity of solar radiation at the top of Earth’s atmosphere.X Earth’s Climate X Glory

PRESS RELEASE: Improved measurements of sun to advance understanding of climate change

New research led by CU-Boulder/LASP scientist Greg Kopp will advance scientists’ understanding of the contribution of natural versus anthropogenic causes of climate change. The research improves the accuracy of the continuous, 32-year record of the sun’s energy output, which scientists call total solar irradiance (TSI). Energy from the sun is the primary energy input driving… Read more »