Posts Tagged: MinXSS

LASP-led CubeSat will study Earth’s inner radiation belt

A NASA-funded CubeSat, built and operated at LASP, will study the inner radiation belt of Earth’s magnetosphere, providing new insight into the energetic particles that can disrupt satellites and threaten spacewalking astronauts.

The $4 million Cubesat: Inner Radiation Belt Experiment (CIRBE) mission, tentatively slated for a 2021 launch, will provide some of the first advanced resolution of one of Earth’s two Van Allen belts, a zone that traps energetic particles in the planet’s magnetic field. This powerful radiation, known to physicists since the late 1950s, poses a hazard to solar panels, electronic circuitry, and other hardware onboard spacecraft traveling at and beyond low-Earth orbit.

MinXSS CubeSat fills critical gap in measuring the sun

A bread loaf-sized satellite, designed and built by University of Colorado students, has been collecting data since its deployment from the International Space Station on May 16 and is providing observations of the sun at unprecedented wavelengths and resolution.

The Miniature X-ray Solar Spectrometer (MinXSS)—a 30cm x 10cm x 10 cm, 3-unit satellite—is the first ever science CubeSat launched for NASA’s Science Mission Directorate and has already met its minimum mission science criteria for data and observations.

MinXSS CubeSat set to deploy from ISS, study sun’s soft X-rays

The bread loaf-sized Miniature X-Ray Solar Spectrometer (MinXSS) CubeSat will be deployed from an airlock on the International Space Station (ISS) at 4 a.m. MDT on Monday, May 16, beginning its journey into space where it will study emissions from the sun that can affect ground-based communications systems.

The NASA-funded MinXSS, designed, built, and operated by University of Colorado Boulder students and faculty at LASP and CU-Boulder’s Aerospace Engineering Sciences Department (AES), will operate in Earth’s orbit for up to 12 months. The CubeSat will be deployed from the ISS via a special deployer designed by NanoRacks, LLC.

The MinXSS will observe soft X-rays from the sun, which can disrupt Earth’s upper atmosphere and hamper radio and GPS signals traveling through the region. The intensity of the soft x-ray emissions emitted from the sun is continuously changing over a large range—with peak emission levels occurring during large eruptions on the sun called solar flares.

LASP-built MinXSS CubeSat to study solar flares, X-rays emitted by the sun

A NASA-funded miniature satellite built by LASP and University of Colorado Boulder students will launch at 5:55 p.m. EST on Thursday from Cape Canaveral, Florida, the start of a six-month-long mission to study solar flares and the powerful X-rays emitted by the sun.

The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat, which was built by students in CU-Boulder’s Department of Aerospace Engineering (AES) in collaboration with LASP researchers, will help shed light on how powerful electromagnetic emissions from the sun impact the Earth’s atmosphere, an effect known as space weather.

LASP cubesat will study the sun in soft X-rays

At any given moment, our sun emits a range of light waves far more expansive than what our eyes alone can see: from visible light to extreme ultraviolet to soft and hard X-rays. Different wavelengths can have different effects at Earth and, what’s more, when observed and analyzed correctly, those wavelengths can provide scientists with information about events on the sun. In 2012 and 2013, a detector was launched on a sounding rocket for a 15 minute trip to look at a range of sunlight previously not well-observed: soft X-rays.

Latest CubeSat project strengthens partnership with aerospace industry

A NASA-funded miniature satellite built by University of Colorado Boulder students to scrutinize solar flares erupting from the sun’s surface is the latest example of the university’s commitment to advancing aerospace technology and space science through strong partnerships with industry and government.

The $1 million Miniature X-ray Solar Spectrometer (MinXSS), led by CU-Boulder faculty in the Laboratory for Atmospheric and Space Physics and the Department of Aerospace Engineering Sciences, recently was selected by NASA for launch in January 2015 from the International Space Station.