Posts Tagged: Nick Schneider

MAVEN sets its sights beyond Mars

For more than four years, NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission has explored the mysteries of the Red Planet’s upper atmosphere. More recently, the spacecraft has gotten up close and personal with that same expanse of gas.

Earlier this year, MAVEN dipped into the highest reaches of Mars’ atmosphere over a two-month “aerobraking” campaign, using the resistance there to slow itself down in space and shift the dynamics of its orbit.

Those maneuvers ushered in a new era for MAVEN and for LASP, which leads the overall mission and the science operations for MAVEN, and built two of its instruments.

MAVEN selfie marks four years in orbit at Mars

Today, NASA’s MAVEN spacecraft celebrates four years in orbit studying the upper atmosphere of the Red Planet and how it interacts with the Sun and the solar wind. To mark the occasion, the team has released a selfie image of the spacecraft at Mars.

MAVEN’s selfie was made by looking at ultraviolet wavelengths of sunlight reflected off of components of the spacecraft. The image was obtained with the Imaging Ultraviolet Spectrograph (IUVS) instrument, built at LASP, that normally looks at ultraviolet emissions from the Martian upper atmosphere. The IUVS instrument is mounted on a platform at the end of a 1.2-m boom (its own “selfie stick”), and by rotating around the boom can look back at the spacecraft. The selfie was made from 21 different images, obtained with the IUVS in different orientations, that have been stitched together.

Stolen electrons key to unusual Mars aurora

Auroras appear on Earth as ghostly displays of colorful light in the night sky, usually near the poles. Our rocky neighbor Mars has auroras too, and NASA’s MAVEN spacecraft just found a new type of Martian aurora, according to a study led by LASP scientists. This phenomenon occurs over much of the day side of the Red Planet, where auroras are very hard to see.

Auroras flare up when energetic particles plunge into a planet’s atmosphere, bombarding gases and making them glow. While electrons generally cause this natural phenomenon, sometime protons can elicit the same response, although it’s more rare. Now, the MAVEN team has learned that protons were doing at Mars the same thing as electrons usually do at Earth—create aurora.

Schneider honored for helping unravel mysteries of Mars

LASP research associate Nick Schneider has been awarded NASA’s Exceptional Scientific Achievement Medal for his contributions to the success of NASA’s orbiting MAVEN mission now at Mars.

Schneider, also a University of Colorado Boulder professor of astrophysical and planetary sciences, is the lead scientist on the LASP-built Imaging Ultraviolet Spectrograph (IUVS) riding on NASA’s MAVEN spacecraft that arrived at Mars in 2014. LASP Associate Director for Science, Bruce Jakosky, is the principal investigator for the MAVEN mission.

NASA’s Exceptional Scientific Achievement Medal is given for individual efforts that have resulted in key scientific discoveries or contributions of fundamental importance in the field. Schneider was presented with the medal in a ceremony Oct. 31 at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The Voyager spacecraft: 40 years in space, surreal solar system discoveries

In 1977, two NASA space probes destined to forever upend our view of the solar system launched from Cape Canaveral, Florida.

The identical spacecraft, Voyager 1 and Voyager 2, took off in in August and September 40 years ago and were programmed to pass by Jupiter and Saturn on different paths. Voyager 2 went on to visit Uranus and Neptune, completing NASA’s “Grand Tour of the Solar System,” perhaps the most exhilarating interplanetary mission ever flown.

CU Boulder scientists at LASP, who designed and built identical instruments for Voyager 1 and Voyager 2, were as stunned as anyone when the spacecraft began sending back data to Earth.

High-altitude water acts as atmospheric escape route for Martian hydrogen

LASP researchers have discovered an atmospheric escape route for hydrogen on Mars, a mechanism that may have played a significant role in the planet’s loss of liquid water.

The findings describe a process in which water molecules rise to the middle layers of the planet’s atmosphere during warmer seasons of the year and then break apart, triggering a large increase in the rate of hydrogen escape from the atmosphere to space in a span of just weeks.

MAVEN Mission Reveals Speed of Solar Wind Stripping Martian Atmosphere

Scientists involved in NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission, which is being led by the LASP team at the University of Colorado Boulder, have identified the process that appears to have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life to the cold, arid planet Mars is today.

MAVEN data have enabled researchers to determine the rate at which the Martian atmosphere currently is losing gas to space via stripping by the solar wind. The findings reveal that the erosion of Mars’ atmosphere increases significantly during solar storms. The scientific results from the mission appear in the Nov. 5 issues of the journals Science and Geophysical Research Letters.

MAVEN spacecraft detects aurora and mysterious dust cloud around Mars

NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has observed two unexpected phenomena in the Martian atmosphere: an unexplained high-altitude dust cloud and aurora that reaches deep into the Martian atmosphere.

The presence of dust at orbital altitudes from about 93 miles (150 kilometers) to 190 miles (300 kilometers) above the surface was not predicted. Although the source and composition of the dust are unknown, there is no hazard to MAVEN and other spacecraft orbiting Mars.

Mars spacecraft, including MAVEN, reveal comet flyby effects on Martian atmosphere

Two NASA and one European spacecraft, including NASA’s MAVEN mission—led by LASP—have gathered new information about the basic properties of a wayward comet that buzzed by Mars Oct. 19, directly detecting its effects on the Martian atmosphere.

Data from observations carried out by MAVEN, NASA’s Mars Reconnaissance Orbiter (MRO) and the European Space Agency’s Mars Express spacecraft revealed that debris from the comet, known officially as Comet C/2013 A1 Siding Spring, caused an intense meteor shower and added a new layer of ions, or charged particles, to the ionosphere. The ionosphere is an electrically charged region in the atmosphere that reaches from about 75 miles (120 kilometers) to several hundred miles above the Martian surface.

Using the observations, scientists were able to make a direct connection between the input of debris from the meteor shower to the subsequent formation of the transient layer of ions—the first time such an event has been observed on any planet, including Earth, said the MAVEN research team.

MAVEN returns first Mars observations

The LASP-led Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft has obtained its first observations of the extended upper atmosphere surrounding Mars.

The Imaging Ultraviolet Spectrograph (IUVS) instrument obtained these false-color images eight hours after the successful completion of Mars orbit insertion by the spacecraft at 10:24 p.m. EDT Sunday, Sept. 21 after a 10-month journey.

LASP-led Mars mission set for orbit insertion on Sept. 21

A NASA mission to Mars led by LASP is set to slide into orbit around the red planet on Sept. 21 to investigate how its climate has changed over the eons, completing a 10-month interplanetary journey of 442 million miles.

The orbit-insertion maneuver will begin with six thruster engines firing to shed some of the velocity from the spacecraft, known as the Mars Atmosphere and Volatile EvolutioN, or MAVEN mission. The thruster engines will ignite and burn for 33 minutes to slow the spacecraft, allowing it to be captured into an elliptical orbit around Mars.

Colorado aerospace leaders host program on MAVEN and Mars exploration

The importance of Mars exploration and how the aerospace industry partners with university researchers to advance one of Colorado’s leading economic sectors will be featured at a free program Monday, Sept. 8, in south Denver.

Aerospace leaders will discuss the importance of Mars exploration and the role of the Mars Atmosphere and Volatile EvolutioN, or MAVEN mission, the involvement of Colorado companies in space exploration and the value of public/private partnerships involving university-based research. Speakers will include Jim Green, director of NASA planetary science; Nick Schneider, MAVEN co-investigator and professor in the CU-Boulder Department of Astrophysical and Planetary Sciences; Guy Beutelschies, space exploration systems director, Lockheed Martin; Jim Sponnick, vice president of Atlas and Delta programs, United Launch Alliance; and Patrick Carr, vice president and general manager of command, control and communications systems, Exelis.

Get involved: MAVEN blast-off to Mars!

MAVEN is set to launch aboard a United Launch Alliance Atlas V 401 rocket Nov. 18. The two-hour launch window extends from 1:28 to 3:28 p.m. EST. Liftoff will occur from Cape Canaveral Air Force Station’s Space Launch Complex 41.

Launch commentary coverage, as well as prelaunch media briefings, will be carried live on NASA Television and the agency’s website.

The following is a list of MAVEN launch-related briefings, events, and activities.

PRESS RELEASE: LASP-led mission to Mars achieves major milestone

The CU/LASP-led mission to Mars, devoted to understanding the Martian upper atmosphere, reached a major milestone last week when it successfully completed its Mission Critical Design Review (CDR) at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. An independent review board, comprised of reviewers from NASA and several external organizations, met from July 11-15 to validate the system design of the Mars Atmosphere and Volatile Evolution, or MAVEN, mission.

LASP scientist publishes astronomy textbook

CU professor and LASP scientist Nick Schneider, together with three colleagues, have recently published the sixth edition of The Cosmic Perspective, a textbook used in introductory astronomy courses. The book covers a comprehensive survey of modern astronomy, from the universality of physics to our solar system and beyond.  The book is used at CU and… Read more »