Posts Tagged: Planetary Science

LASP research points to electrostatic dust transport in reshaping airless planetary bodies

A team of LASP scientists, led by University of Colorado physics professor Mihály Horányi, has conducted laboratory experiments that may bring closure to a long-standing issue of electrostatic dust transport, explaining a variety of unusual phenomena on the surfaces of airless planetary bodies, including observations from the Apollo era and the recent Rosetta mission to Comet 67P.

PRESS RELEASE: Saturn Moon’s Ocean May Have Hydrothermal Activity

Scientists with NASA’s Cassini mission, led by LASP and University of Colorado postdoctoral researcher, Sean Hsu, have found that microscopic grains of rock detected near Saturn imply hydrothermal activity is taking place within the moon Enceladus.

This is the first clear indication of an icy moon having hydrothermal activity—in which seawater infiltrates and reacts with a rocky crust, emerging as a heated, mineral-laden solution. The finding adds to the tantalizing possibility that Enceladus, which displays remarkable geologic activity including geysers, could contain environments suitable for living organisms.

The results were published today in the journal Nature.

LASP-led Mars mission set for orbit insertion on Sept. 21

A NASA mission to Mars led by LASP is set to slide into orbit around the red planet on Sept. 21 to investigate how its climate has changed over the eons, completing a 10-month interplanetary journey of 442 million miles.

The orbit-insertion maneuver will begin with six thruster engines firing to shed some of the velocity from the spacecraft, known as the Mars Atmosphere and Volatile EvolutioN, or MAVEN mission. The thruster engines will ignite and burn for 33 minutes to slow the spacecraft, allowing it to be captured into an elliptical orbit around Mars.

New study shows citizens count lunar craters on par with professionals

A new study led by LASP research scientist Stuart Robbins indicates that volunteer “citizen scientists” counted lunar craters at rates comparable to professional scientists. Using images from NASA’s Lunar Reconnaissance Orbiter, volunteers for CosmoQuest, which contributes real science data to NASA missions, analyzed the high-resolution photos of the Moon for impact craters. Robbins and his co-authors then compared the volunteers’ results to those of eight professional planetary crater-counters.

LASP scientist publishes astronomy textbook

CU professor and LASP scientist Nick Schneider, together with three colleagues, have recently published the sixth edition of The Cosmic Perspective, a textbook used in introductory astronomy courses. The book covers a comprehensive survey of modern astronomy, from the universality of physics to our solar system and beyond.  The book is used at CU and… Read more »