University of Colorado at Boulder University of Colorado CU Home Search A to Z Index Map
Laboratory for Atmospheric and Space Physics

Juno Papers (all)

Juno Journal Articles (as known by date at bottom of page).
(Primary source is Steve L’s papers spreadsheet, then any Rob W randomly spots.)

These DOIs were not found in NASA ADS (yet), so are excluded from the following section:
– Wibisono et al. (2020), Temporal and Spectral Studies by XMM‐Newton of Jupiter’s X‐ray Auroras During a Compression Event, doi: 10.1029/2019ja027676
– Mauk et al. (2020), Juno Energetic Neutral Atom (ENA) Remote Measurements of Magnetospheric Injection Dynamics in Jupiter’s Io Torus Regions, doi: 10.1029/2020ja027964
– Kulowski et al. (2020), Contributions to Jupiter’s Gravity Field From Dynamics in the Dynamo Region, doi: 10.1029/2019je006165
– Valek et al. (2020), Juno in situ observations above the Jovian equatorial ionosphere, doi: 10.1029/2020gl087623

There are 163 papers. [View list in NASA ADS] ← ADS Library Rob W keeps.

163)Bagenal, Fran and Dols, Vincent (2020), The Space Environment of Io and Europa, Journal of Geophysical Research (Space Physics), 125, e2019JA027485, doi:10.1029/2019JA027485.
ADS  Cites
BibTeX DOI 
162)Mura, A., et al. (2020), Infrared observations of Io from Juno, Icarus, 341, 113607, doi:10.1016/j.icarus.2019.113607.
ADS  Cites
BibTeX DOI 
161)Allegrini, F., et al. (2020), Energy Flux and Characteristic Energy of Electrons Over Jupiter’s Main Auroral Emission, Journal of Geophysical Research (Space Physics), 125, e27693, doi:10.1029/2019JA027693.
ADS  Cites
BibTeX DOI 
160)Grassi, D., et al. (2020), On the Spatial Distribution of Minor Species in Jupiter’s Troposphere as Inferred From Juno JIRAM Data, Journal of Geophysical Research (Planets), 125, e06206, doi:10.1029/2019JE006206.
ADS  Cites
BibTeX DOI 
159)Kim, Thomas K., et al. (2020), Survey of Ion Properties in Jupiter’s Plasma Sheet: Juno JADE-I Observations, Journal of Geophysical Research (Space Physics), 125, e27696, doi:10.1029/2019JA027696.
ADS  Cites
BibTeX DOI 
158)Nerney, Edward G. and Bagenal, Fran (2020), Combining UV Spectra and Physical Chemistry to Constrain the Hot Electron Fraction in the Io Plasma Torus, Journal of Geophysical Research (Space Physics), 125, e27458, doi:10.1029/2019JA027458.
ADS  Cites
BibTeX DOI 
157)Weigt, D.M., et al. (2020), Chandra Observations of Jupiter’s X-ray Auroral Emission During Juno Apojove 2017, Journal of Geophysical Research (Planets), 125, e06262, doi:10.1029/2019JE006262.
ADS  Cites
BibTeX DOI 
156)Mauk, B.H., et al. (2020), Energetic Particles and Acceleration Regions Over Jupiter’s Polar Cap and Main Aurora: A Broad Overview, Journal of Geophysical Research (Space Physics), 125, e27699, doi:10.1029/2019JA027699.
ADS  Cites
BibTeX DOI 
155)Vogt, Marissa F., et al. (2020), Magnetotail Reconnection at Jupiter: A Survey of Juno Magnetic Field Observations, Journal of Geophysical Research (Space Physics), 125, e27486, doi:10.1029/2019JA027486.
ADS  Cites
BibTeX DOI 
154)Houston, S.J., et al. (2020), Jovian Auroral Ion Precipitation: X-Ray Production From Oxygen and Sulfur Precipitation, Journal of Geophysical Research (Space Physics), 125, e27007, doi:10.1029/2019JA027007.
ADS  Cites
BibTeX DOI 
153)Kim, Thomas K., et al. (2020), Method to Derive Ion Properties From Juno JADE Including Abundance Estimates for O+ and S2+, Journal of Geophysical Research (Space Physics), 125, e26169, doi:10.1029/2018JA026169.
ADS  Cites
BibTeX DOI 
152)Li, Cheng, et al. (2020), The water abundance in Jupiter’s equatorial zone, Nature Astronomy, doi:10.1038/s41550-020-1009-3.
ADS  Cites
BibTeX DOI 
151)Parisi, Marzia, et al. (2020), A mascon approach to estimating the depth of Jupiter’s Great Red Spot with Juno gravity measurements, Planetary Space Science, 181, 104781, doi:10.1016/j.pss.2019.104781.
ADS  Cites
BibTeX DOI 
150)Szalay, J.R., et al. (2020), Alfvénic Acceleration Sustains Ganymede’s Footprint Tail Aurora, Geophysics Research Letters, 47, e86527, doi:10.1029/2019GL086527.
ADS  Cites
BibTeX DOI 
149)Iñurrigarro, P., et al. (2020), Observations and numerical modelling of a convective disturbance in a large-scale cyclone in Jupiter’s South Temperate Belt, Icarus, 336, 113475, doi:10.1016/j.icarus.2019.113475.
ADS  Cites
BibTeX DOI 
148)Szalay, J.R., et al. (2020), Proton Acceleration by Io’s Alfvénic Interaction, Journal of Geophysical Research (Space Physics), 125, e27314, doi:10.1029/2019JA027314.
ADS  Cites
BibTeX DOI 
147)Tabataba-Vakili, F., et al. (2020), Long-term tracking of circumpolar cyclones on Jupiter from polar observations with JunoCam, Icarus, 335, 113405, doi:10.1016/j.icarus.2019.113405.
ADS  Cites
BibTeX DOI 
146)Durante, D. (2019), Effect of Juno’s Solar Panel Bending on Gravity Measurements, Journal of Guidance Control Dynamics, 42, 2694-2699, doi:10.2514/1.G004503.
ADS  Cites
BibTeX DOI 
145)Kita, H., et al. (2019), Jovian UV Aurora’s Response to the Solar Wind: Hisaki EXCEED and Juno Observations, Journal of Geophysical Research (Space Physics), 124, 10, doi:10.1029/2019JA026997.
ADS  Cites
BibTeX DOI 
144)Paranicas, C., et al. (2019), Io’s Effect on Energetic Charged Particles as Seen in Juno Data, Geophysics Research Letters, 46, 13, doi:10.1029/2019GL085393.
ADS  Cites
BibTeX DOI 
143)Gérard, J. -C., et al. (2019), Contemporaneous Observations of Jovian Energetic Auroral Electrons and Ultraviolet Emissions by the Juno Spacecraft, Journal of Geophysical Research (Space Physics), 124, 8298-8317, doi:10.1029/2019JA026862.
ADS  Cites
BibTeX DOI 
142)Louis, C.K., et al. (2019), Jovian Auroral Radio Sources Detected In Situ by Juno/Waves: Comparisons With Model Auroral Ovals and Simultaneous HST FUV Images, Geophysics Research Letters, 46, 11, doi:10.1029/2019GL084799.
ADS  Cites
BibTeX DOI 
141)Ranquist, D.A., et al. (2019), Survey of Jupiter’s Dawn Magnetosheath Using Juno, Journal of Geophysical Research (Space Physics), 124, 9106-9123, doi:10.1029/2019JA027382.
ADS  Cites
BibTeX DOI 
140)Serra, Daniele, et al. (2019), A solution of Jupiter’s gravitational field from Juno data with the ORBIT14 software, Monthly Notices of the RAS, 490, 766-772, doi:10.1093/mnras/stz2657.
ADS  Cites
BibTeX DOI 
139)Swithenbank-Harris, B.G. and Nichols, J.D. and Bunce, E.J. (2019), Jupiter’s Dark Polar Region as Observed by the Hubble Space Telescope During the Juno Approach Phase, Journal of Geophysical Research (Space Physics), 124, 9094-9105, doi:10.1029/2019JA027306.
ADS  Cites
BibTeX DOI 
138)Yao, Z.H., et al. (2019), On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux: Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki, Geophysics Research Letters, 46, 11, doi:10.1029/2019GL084201.
ADS  Cites
BibTeX DOI 
137)Notaro, Virginia and Durante, Daniele and Iess, Luciano (2019), On the determination of Jupiter’s satellite-dependent Love numbers from Juno gravity data, Planetary Space Science, 175, 34-40, doi:10.1016/j.pss.2019.06.001.
ADS  Cites
BibTeX DOI 
136)Westlake, J.H., et al. (2019), High-Energy (>10 MeV) Oxygen and Sulfur Ions Observed at Jupiter From Pulse Width Measurements of the JEDI Sensors, Geophysics Research Letters, 46, 10, doi:10.1029/2019GL083842.
ADS  Cites
BibTeX DOI 
135)Migliorini, A., et al. (2019), H3+ characteristics in the Jupiter atmosphere as observed at limb with Juno/JIRAM, Icarus, 329, 132-139, doi:10.1016/j.icarus.2019.04.003.
ADS  Cites
BibTeX DOI 
134)Filacchione, Gianrico, et al. (2019), Serendipitous infrared observations of Europa by Juno/JIRAM, Icarus, 328, 1-13, doi:10.1016/j.icarus.2019.03.022.
ADS  Cites
BibTeX DOI 
133)Haggerty, D.K., et al. (2019), Jovian Injections Observed at High Latitude, Geophysics Research Letters, 46, 9397-9404, doi:10.1029/2019GL083442.
ADS  Cites
BibTeX DOI 
132)Valek, P.W., et al. (2019), Jovian High-Latitude Ionospheric Ions: Juno In Situ Observations, Geophysics Research Letters, 46, 8663-8670, doi:10.1029/2019GL084146.
ADS  Cites
BibTeX DOI 
131)Duer, Keren and Galanti, Eli and Kaspi, Yohai (2019), Analysis of Jupiter’s Deep Jets Combining Juno Gravity and Time-varying Magnetic Field Measurements, Astrophysical Journal, 879, L22, doi:10.3847/2041-8213/ab288e.
ADS  Cites
BibTeX DOI 
130)Gershman, Daniel J., et al. (2019), Alfvénic Fluctuations Associated With Jupiter’s Auroral Emissions, Geophysics Research Letters, 46, 7157-7165, doi:10.1029/2019GL082951.
ADS  Cites
BibTeX DOI 
129)Hue, V., et al. (2019), Juno-UVS Observation of the Io Footprint During Solar Eclipse, Journal of Geophysical Research (Space Physics), 124, 5184-5199, doi:10.1029/2018JA026431.
ADS  Cites
BibTeX DOI 
128)Kotsiaros, Stavros, et al. (2019), Birkeland currents in Jupiter’s magnetosphere observed by the polar-orbiting Juno spacecraft, Nature Astronomy, 3, 904-909, doi:10.1038/s41550-019-0819-7.
ADS  Cites
BibTeX DOI 
127)Mauk, B.H., et al. (2019), Investigation of Mass-/Charge-Dependent Escape of Energetic Ions Across the Magnetopauses of Earth and Jupiter, Journal of Geophysical Research (Space Physics), 124, 5539-5567, doi:10.1029/2019JA026626.
ADS  Cites
BibTeX DOI 
126)Phipps, Phillip H., et al. (2019), Variations in the Density Distribution of the Io Plasma Torus as Seen by Radio Occultations on Juno Perijoves 3, 6, and 8, Journal of Geophysical Research (Space Physics), 124, 5200-5221, doi:10.1029/2018JA026297.
ADS  Cites
BibTeX DOI 
125)Imai, Masafumi, et al. (2019), Evidence for low density holes in Jupiter’s ionosphere, Nature Communications, 10, 2751, doi:10.1038/s41467-019-10708-w.
ADS  Cites
BibTeX DOI 
124)Moore, K.M., et al. (2019), Time variation of Jupiter’s internal magnetic field consistent with zonal wind advection, Nature Astronomy, 3, 730-735, doi:10.1038/s41550-019-0772-5.
ADS  Cites
BibTeX DOI 
123)Galanti, Eli, et al. (2019), Determining the Depth of Jupiter’s Great Red Spot with Juno: A Slepian Approach, Astrophysical Journal, 874, L24, doi:10.3847/2041-8213/ab1086.
ADS  Cites
BibTeX DOI 
122)Pensionerov, I.A., et al. (2019), Model of Jupiter’s Current Sheet With a Piecewise Current Density, Journal of Geophysical Research (Space Physics), 124, 1843-1854, doi:10.1029/2018JA026321.
ADS  Cites
BibTeX DOI 
121)Hue, Vincent, et al. (2019), In-flight Characterization and Calibration of the Juno-ultraviolet Spectrograph (Juno-UVS), Astronomical Journal, 157, 90, doi:10.3847/1538-3881/aafb36.
ADS  Cites
BibTeX DOI 
120)Li, Cheng and Chen, Xi (2019), Simulating Nonhydrostatic Atmospheres on Planets (SNAP): Formulation, Validation, and Application to the Jovian Atmosphere, Astrophysical Journal, 240, 37, doi:10.3847/1538-4365/aafdaa.
ADS  Cites
BibTeX DOI 
119)Ebert, R.W., et al. (2019), Comparing Electron Energetics and UV Brightness in Jupiter’s Northern Polar Region During Juno Perijove 5, Geophysics Research Letters, 46, 19-27, doi:10.1029/2018GL081129.
ADS  Cites
BibTeX DOI 
118)Imai, Masafumi, et al. (2019), Probing Jovian Broadband Kilometric Radio Sources Tied to the Ultraviolet Main Auroral Oval With Juno, Geophysics Research Letters, 46, 571-579, doi:10.1029/2018GL081227.
ADS  Cites
BibTeX DOI 
117)Adriani, A., et al. (2018), Characterization of Mesoscale Waves in the Jupiter NEB by Jupiter InfraRed Auroral Mapper on board Juno, Astronomical Journal, 156, 246, doi:10.3847/1538-3881/aae525.
ADS  Cites
BibTeX DOI 
116)Bonfond, B., et al. (2018), Bar Code Events in the Juno-UVS Data: Signature ̃10 MeV Electron Microbursts at Jupiter, Geophysics Research Letters, 45, 12, doi:10.1029/2018GL080490.
ADS  Cites
BibTeX DOI 
115)Szalay, J.R., et al. (2018), In Situ Observations Connected to the Io Footprint Tail Aurora, Journal of Geophysical Research (Planets), 123, 3061-3077, doi:10.1029/2018JE005752.
ADS  Cites
BibTeX DOI 
114)Sánchez-Lavega, A., et al. (2018), The Rich Dynamics of Jupiter’s Great Red Spot from JunoCam: Juno Images, Astronomical Journal, 156, 162, doi:10.3847/1538-3881/aada81.
ADS  Cites
BibTeX DOI 
113)Clark, G., et al. (2018), Precipitating Electron Energy Flux and Characteristic Energies in Jupiter’s Main Auroral Region as Measured by Juno/JEDI, Journal of Geophysical Research (Space Physics), 123, 7554-7567, doi:10.1029/2018JA025639.
ADS  Cites
BibTeX DOI 
112)Elliott, S.S., et al. (2018), The Acceleration of Electrons to High Energies Over the Jovian Polar Cap via Whistler Mode Wave-Particle Interactions, Journal of Geophysical Research (Space Physics), 123, 7523-7533, doi:10.1029/2018JA025797.
ADS  Cites
BibTeX DOI 
111)Gershman, Daniel J., et al. (2018), Juno Constraints on the Formation of Jupiter’s Magnetospheric Cushion Region, Geophysics Research Letters, 45, 9427-9434, doi:10.1029/2018GL079118.
ADS  Cites
BibTeX DOI 
110)Gérard, J. -C., et al. (2018), Concurrent ultraviolet and infrared observations of the north Jovian aurora during Juno’s first perijove, Icarus, 312, 145-156, doi:10.1016/j.icarus.2018.04.020.
ADS  Cites
BibTeX DOI 
109)Kurth, W.S., et al. (2018), Whistler Mode Waves Associated With Broadband Auroral Electron Precipitation at Jupiter, Geophysics Research Letters, 45, 9372-9379, doi:10.1029/2018GL078566.
ADS  Cites
BibTeX DOI 
108)Louarn, P., et al. (2018), Observation of Electron Conics by Juno: Implications for Radio Generation and Acceleration Processes, Geophysics Research Letters, 45, 9408-9416, doi:10.1029/2018GL078973.
ADS  Cites
BibTeX DOI 
107)Moore, Kimberly M., et al. (2018), A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field, Nature, 561, 76-78, doi:10.1038/s41586-018-0468-5.
ADS  Cites
BibTeX DOI 
106)Fletcher, Leigh N., et al. (2018), Jupiter’s Mesoscale Waves Observed at 5 µm by Ground-based Observations and Juno JIRAM, Astronomical Journal, 156, 67, doi:10.3847/1538-3881/aace02.
ADS  Cites
BibTeX DOI 
105)Imai, Masafumi, et al. (2018), Jupiter Lightning-Induced Whistler and Sferic Events With Waves and MWR During Juno Perijoves, Geophysics Research Letters, 45, 7268-7276, doi:10.1029/2018GL078864.
ADS  Cites
BibTeX DOI 
104)Mura, A., et al. (2018), Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter, Science, 361, 774-777, doi:10.1126/science.aat1450.
ADS  Cites
BibTeX DOI 
103)Phipps, Phillip H., et al. (2018), Distribution of Plasma in the Io Plasma Torus as Seen by Radio Occultation During Juno Perijove 1, Journal of Geophysical Research (Space Physics), 123, 6207-6222, doi:10.1029/2017JA025113.
ADS  Cites
BibTeX DOI 
102)Stallard, Tom S., et al. (2018), Identification of Jupiter’s magnetic equator through H3+ ionospheric emission, Nature Astronomy, 2, 773-777, doi:10.1038/s41550-018-0523-z.
ADS  Cites
BibTeX DOI 
101)Brown, Shannon, et al. (2018), Prevalent lightning sferics at 600 megahertz near Jupiter’s poles, Nature, 558, 87-90, doi:10.1038/s41586-018-0156-5.
ADS  Cites
BibTeX DOI 
100)Grassi, D., et al. (2018), First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAM-Juno Images, Journal of Geophysical Research (Planets), 123, 1511-1524, doi:10.1029/2018JE005555.
ADS  Cites
BibTeX DOI 
99)Kolmašová, Ivana, et al. (2018), Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth, Nature Astronomy, 2, 544-548, doi:10.1038/s41550-018-0442-z.
ADS  Cites
BibTeX DOI 
98)Grodent, Denis, et al. (2018), Jupiter’s Aurora Observed With HST During Juno Orbits 3 to 7, Journal of Geophysical Research (Space Physics), 123, 3299-3319, doi:10.1002/2017JA025046.
ADS  Cites
BibTeX DOI 
97)Wilson, R.J., et al. (2018), Solar Wind Properties During Juno’s Approach to Jupiter: Data Analysis and Resulting Plasma Properties Utilizing a 1-D Forward Model, Journal of Geophysical Research (Space Physics), 123, 2772-2786, doi:10.1002/2017JA024860.
ADS  Cites
BibTeX DOI 
96)Adriani, A., et al. (2018), Clusters of cyclones encircling Jupiter’s poles, Nature, 555, 216-219, doi:10.1038/nature25491.
ADS  Cites
BibTeX DOI 
95)Connerney, J.E.P., et al. (2018), A New Model of Jupiter’s Magnetic Field From Juno’s First Nine Orbits, Geophysics Research Letters, 45, 2590-2596, doi:10.1002/2018GL077312.
ADS  Cites
BibTeX DOI 
94)Guillot, T., et al. (2018), A suppression of differential rotation in Jupiter’s deep interior, Nature, 555, 227-230, doi:10.1038/nature25775.
ADS  Cites
BibTeX DOI 
93)Iess, L., et al. (2018), Measurement of Jupiter’s asymmetric gravity field, Nature, 555, 220-222, doi:10.1038/nature25776.
ADS  Cites
BibTeX DOI 
92)Kaspi, Y., et al. (2018), Jupiter’s atmospheric jet streams extend thousands of kilometres deep, Nature, 555, 223-226, doi:10.1038/nature25793.
ADS  Cites
BibTeX DOI 
91)Paranicas, C., et al. (2018), Intervals of Intense Energetic Electron Beams Over Jupiter’s Poles, Journal of Geophysical Research (Space Physics), 123, 1989-1999, doi:10.1002/2017JA025106.
ADS  Cites
BibTeX DOI 
90)Elliott, S.S., et al. (2018), Pitch Angle Scattering of Upgoing Electron Beams in Jupiter’s Polar Regions by Whistler Mode Waves, Geophysics Research Letters, 45, 1246-1252, doi:10.1002/2017GL076878.
ADS  Cites
BibTeX DOI 
89)Mauk, B.H., et al. (2018), Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter’s Main Aurora, Geophysics Research Letters, 45, 1277-1285, doi:10.1002/2017GL076901.
ADS  Cites
BibTeX DOI 
88)Adriani, Alberto, et al. (2017), JIRAM, the Jovian Infrared Auroral Mapper, Space Science Reviews, 213, 393-446, doi:10.1007/s11214-014-0094-y.
ADS  Cites
BibTeX DOI 
87)Asmar, Sami W., et al. (2017), The Juno Gravity Science Instrument, Space Science Reviews, 213, 205-218, doi:10.1007/s11214-017-0428-7.
ADS  Cites
BibTeX DOI 
86)Bagenal, F., et al. (2017), Magnetospheric Science Objectives of the Juno Mission, Space Science Reviews, 213, 219-287, doi:10.1007/s11214-014-0036-8.
ADS  Cites
BibTeX DOI 
85)Becker, H.N., et al. (2017), The Juno Radiation Monitoring (RM) Investigation, Space Science Reviews, 213, 507-545, doi:10.1007/s11214-017-0345-9.
ADS  Cites
BibTeX DOI 
84)Bolton, S.J. and Connerney, J.E.P. (2017), Editorial: Topical Collection of the Juno Mission Science Objectives, Instruments, and Implementation, Space Science Reviews, 213, 1-3, doi:10.1007/s11214-017-0430-0.
ADS  Cites
BibTeX DOI 
83)Bolton, S.J., et al. (2017), The Juno Mission, Space Science Reviews, 213, 5-37, doi:10.1007/s11214-017-0429-6.
ADS  Cites
BibTeX DOI 
82)Cao, Hao and Stevenson, David J. (2017), Zonal flow magnetic field interaction in the semi-conducting region of giant planets, Icarus, 296, 59-72, doi:10.1016/j.icarus.2017.05.015.
ADS  Cites
BibTeX DOI 
81)Connerney, J.E.P., et al. (2017), The Juno Magnetic Field Investigation, Space Science Reviews, 213, 39-138, doi:10.1007/s11214-017-0334-z.
ADS  Cites
BibTeX DOI 
80)Gladstone, G. Randall, et al. (2017), The Ultraviolet Spectrograph on NASA’s Juno Mission, Space Science Reviews, 213, 447-473, doi:10.1007/s11214-014-0040-z.
ADS  Cites
BibTeX DOI 
79)Grassi, D., et al. (2017), Analysis of IR-bright regions of Jupiter in JIRAM-Juno data: Methods and validation of algorithms, Journal of Quantitiative Spectroscopy and Radiative Transfer, 202, 200-209, doi:10.1016/j.jqsrt.2017.08.008.
ADS  Cites
BibTeX DOI 
78)Hansen, C.J., et al. (2017), Junocam: Juno’s Outreach Camera, Space Science Reviews, 213, 475-506, doi:10.1007/s11214-014-0079-x.
ADS  Cites
BibTeX DOI 
77)Janssen, M.A., et al. (2017), MWR: Microwave Radiometer for the Juno Mission to Jupiter, Space Science Reviews, 213, 139-185, doi:10.1007/s11214-017-0349-5.
ADS  Cites
BibTeX DOI 
76)Kurth, W.S., et al. (2017), The Juno Waves Investigation, Space Science Reviews, 213, 347-392, doi:10.1007/s11214-017-0396-y.
ADS  Cites
BibTeX DOI 
75)Mauk, B.H., et al. (2017), The Jupiter Energetic Particle Detector Instrument (JEDI) Investigation for the Juno Mission, Space Science Reviews, 213, 289-346, doi:10.1007/s11214-013-0025-3.
ADS  Cites
BibTeX DOI 
74)McComas, D.J., et al. (2017), The Jovian Auroral Distributions Experiment (JADE) on the Juno Mission to Jupiter, Space Science Reviews, 213, 547-643, doi:10.1007/s11214-013-9990-9.
ADS  Cites
BibTeX DOI 
73)Steffes, Paul G., et al. (2017), High-Precision Laboratory Measurements Supporting Retrieval of Water Vapor, Gaseous Ammonia, and Aqueous Ammonia Clouds with the Juno Microwave Radiometer (MWR), Space Science Reviews, 213, 187-204, doi:10.1007/s11214-016-0265-0.
ADS  Cites
BibTeX DOI 
72)Tollefson, Joshua, et al. (2017), Changes in Jupiter’s Zonal Wind Profile preceding and during the Juno mission, Icarus, 296, 163-178, doi:10.1016/j.icarus.2017.06.007.
ADS  Cites
BibTeX DOI 
71)Li, W., et al. (2017), Understanding the Origin of Jupiter’s Diffuse Aurora Using Juno’s First Perijove Observations, Geophysics Research Letters, 44, 10, doi:10.1002/2017GL075545.
ADS  Cites
BibTeX DOI 
70)Clark, G., et al. (2017), Energetic particle signatures of magnetic field-aligned potentials over Jupiter’s polar regions, Geophysics Research Letters, 44, 8703-8711, doi:10.1002/2017GL074366.
ADS  Cites
BibTeX DOI 
69)Ebert, R.W., et al. (2017), Spatial Distribution and Properties of 0.1-100 keV Electrons in Jupiter’s Polar Auroral Region, Geophysics Research Letters, 44, 9199-9207, doi:10.1002/2017GL075106.
ADS  Cites
BibTeX DOI 
68)Louis, C.K., et al. (2017), Io-Jupiter decametric arcs observed by Juno/Waves compared to ExPRES simulations, Geophysics Research Letters, 44, 9225-9232, doi:10.1002/2017GL073036.
ADS  Cites
BibTeX DOI 
67)Mauk, B.H., et al. (2017), Discrete and broadband electron acceleration in Jupiter’s powerful aurora, Nature, 549, 66-69, doi:10.1038/nature23648.
ADS  Cites
BibTeX DOI 
66)Santos-Costa, D., et al. (2017), First look at Jupiter’s synchrotron emission from Juno’s perspective, Geophysics Research Letters, 44, 8676-8684, doi:10.1002/2017GL072836.
ADS  Cites
BibTeX DOI 
65)Bolton, Scott and Levin, Steven and Bagenal, Fran (2017), Juno’s first glimpse of Jupiter’s complexity, Geophysics Research Letters, 44, 7663-7667, doi:10.1002/2017GL074118.
ADS  Cites
BibTeX DOI 
64)Gershman, Daniel J., et al. (2017), Juno observations of large-scale compressions of Jupiter’s dawnside magnetopause, Geophysics Research Letters, 44, 7559-7568, doi:10.1002/2017GL073132.
ADS  Cites
BibTeX DOI 
63)Gladstone, G.R., et al. (2017), Juno-UVS approach observations of Jupiter’s auroras, Geophysics Research Letters, 44, 7668-7675, doi:10.1002/2017GL073377.
ADS  Cites
BibTeX DOI 
62)Ingersoll, Andrew P., et al. (2017), Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer, Geophysics Research Letters, 44, 7676-7685, doi:10.1002/2017GL074277.
ADS  Cites
BibTeX DOI 
61)Nichols, J.D., et al. (2017), Response of Jupiter’s auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno, Geophysics Research Letters, 44, 7643-7652, doi:10.1002/2017GL073029.
ADS  Cites
BibTeX DOI 
60)Valek, P.W., et al. (2017), Hot flow anomaly observed at Jupiter’s bow shock, Geophysics Research Letters, 44, 8107-8112, doi:10.1002/2017GL073175.
ADS  Cites
BibTeX DOI 
59)Allegrini, F., et al. (2017), Electron beams and loss cones in the auroral regions of Jupiter, Geophysics Research Letters, 44, 7131-7139, doi:10.1002/2017GL073180.
ADS  Cites
BibTeX DOI 
58)Bolton, Scott J. (2017), Juno celebrates a year at Jupiter, Nature Astronomy, 1, 0178, doi:10.1038/s41550-017-0178.
ADS  Cites
BibTeX DOI 
57)Fletcher, L.N., et al. (2017), Jupiter’s North Equatorial Belt expansion and thermal wave activity ahead of Juno’s arrival, Geophysics Research Letters, 44, 7140-7148, doi:10.1002/2017GL073383.
ADS  Cites
BibTeX DOI 
56)Haggerty, D.K., et al. (2017), Juno/JEDI observations of 0.01 to >10 MeV energetic ions in the Jovian auroral regions: Anticipating a source for polar X-ray emission, Geophysics Research Letters, 44, 6476-6482, doi:10.1002/2017GL072866.
ADS  Cites
BibTeX DOI 
55)Imai, Masafumi, et al. (2017), Direction-finding measurements of Jovian low-frequency radio components by Juno near Perijove 1, Geophysics Research Letters, 44, 6508-6516, doi:10.1002/2017GL072850.
ADS  Cites
BibTeX DOI 
54)Kurth, W.S., et al. (2017), A new view of Jupiter’s auroral radio spectrum, Geophysics Research Letters, 44, 7114-7121, doi:10.1002/2017GL072889.
ADS  Cites
BibTeX DOI 
53)Szalay, J.R., et al. (2017), Plasma measurements in the Jovian polar region with Juno/JADE, Geophysics Research Letters, 44, 7122-7130, doi:10.1002/2017GL072837.
ADS  Cites
BibTeX DOI 
52)Gruesbeck, Jacob R., et al. (2017), The interplanetary magnetic field observed by Juno enroute to Jupiter, Geophysics Research Letters, 44, 5936-5942, doi:10.1002/2017GL073137.
ADS  Cites
BibTeX DOI 
51)Kaspi, Y., et al. (2017), The effect of differential rotation on Jupiter’s low-degree even gravity moments, Geophysics Research Letters, 44, 5960-5968, doi:10.1002/2017GL073629.
ADS  Cites
BibTeX DOI 
50)Kollmann, P., et al. (2017), A heavy ion and proton radiation belt inside of Jupiter’s rings, Geophysics Research Letters, 44, 5259-5268, doi:10.1002/2017GL073730.
ADS  Cites
BibTeX DOI 
49)Li, Cheng, et al. (2017), The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data, Geophysics Research Letters, 44, 5317-5325, doi:10.1002/2017GL073159.
ADS  Cites
BibTeX DOI 
48)Mura, A., et al. (2017), Infrared observations of Jovian aurora from Juno’s first orbits: Main oval and satellite footprints, Geophysics Research Letters, 44, 5308-5316, doi:10.1002/2017GL072954.
ADS  Cites
BibTeX DOI 
47)Sinclair, J.A., et al. (2017), Independent evolution of stratospheric temperatures in Jupiter’s northern and southern auroral regions from 2014 to 2016, Geophysics Research Letters, 44, 5345-5354, doi:10.1002/2017GL073529.
ADS  Cites
BibTeX DOI 
46)Adriani, A., et al. (2017), Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora, Geophysics Research Letters, 44, 4633-4640, doi:10.1002/2017GL072905.
ADS  Cites
BibTeX DOI 
45)Becker, Heidi N., et al. (2017), Observations of MeV electrons in Jupiter’s innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3, Geophysics Research Letters, 44, 4481-4488, doi:10.1002/2017GL073091.
ADS  Cites
BibTeX DOI 
44)Benn, M., et al. (2017), Observations of interplanetary dust by the Juno magnetometer investigation, Geophysics Research Letters, 44, 4701-4708, doi:10.1002/2017GL073186.
ADS  Cites
BibTeX DOI 
43)Bolton, S.J., et al. (2017), Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft, Science, 356, 821-825, doi:10.1126/science.aal2108.
ADS  Cites
BibTeX DOI 
42)Bonfond, B., et al. (2017), Morphology of the UV aurorae Jupiter during Juno’s first perijove observations, Geophysics Research Letters, 44, 4463-4471, doi:10.1002/2017GL073114.
ADS  Cites
BibTeX DOI 
41)Clark, G., et al. (2017), Observation and interpretation of energetic ion conics in Jupiter’s polar magnetosphere, Geophysics Research Letters, 44, 4419-4425, doi:10.1002/2016GL072325.
ADS  Cites
BibTeX DOI 
40)Connerney, J.E.P., et al. (2017), Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits, Science, 356, 826-832, doi:10.1126/science.aam5928.
ADS  Cites
BibTeX DOI 
39)Cowley, S.W.H., et al. (2017), Magnetosphere-ionosphere coupling at Jupiter: Expectations for Juno Perijove 1 from a steady state axisymmetric physical model, Geophysics Research Letters, 44, 4497-4505, doi:10.1002/2017GL073129.
ADS  Cites
BibTeX DOI 
38)Dinelli, B.M., et al. (2017), Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region, Geophysics Research Letters, 44, 4625-4632, doi:10.1002/2017GL072929.
ADS  Cites
BibTeX DOI 
37)Ebert, R.W., et al. (2017), Accelerated flows at Jupiter’s magnetopause: Evidence for magnetic reconnection along the dawn flank, Geophysics Research Letters, 44, 4401-4409, doi:10.1002/2016GL072187.
ADS  Cites
BibTeX DOI 
36)Folkner, W.M., et al. (2017), Jupiter gravity field estimated from the first two Juno orbits, Geophysics Research Letters, 44, 4694-4700, doi:10.1002/2017GL073140.
ADS  Cites
BibTeX DOI 
35)Grassi, D., et al. (2017), Preliminary results on the composition of Jupiter’s troposphere in hot spot regions from the JIRAM/Juno instrument, Geophysics Research Letters, 44, 4615-4624, doi:10.1002/2017GL072841.
ADS  Cites
BibTeX DOI 
34)Hospodarsky, G.B., et al. (2017), Jovian bow shock and magnetopause encounters by the Juno spacecraft, Geophysics Research Letters, 44, 4506-4512, doi:10.1002/2017GL073177.
ADS  Cites
BibTeX DOI 
33)Hueso, R., et al. (2017), Jupiter cloud morphology and zonal winds from ground-based observations before and during Juno’s first perijove, Geophysics Research Letters, 44, 4669-4678, doi:10.1002/2017GL073444.
ADS  Cites
BibTeX DOI 
32)Imai, Masafumi, et al. (2017), Statistical study of latitudinal beaming of Jupiter’s decametric radio emissions using Juno, Geophysics Research Letters, 44, 4584-4590, doi:10.1002/2017GL073148.
ADS  Cites
BibTeX DOI 
31)Imai, Masafumi, et al. (2017), Latitudinal beaming of Jovian decametric radio emissions as viewed from Juno and the Nançay Decameter Array, Geophysics Research Letters, 44, 4455-4462, doi:10.1002/2016GL072454.
ADS  Cites
BibTeX DOI 
30)Kimura, T., et al. (2017), Transient brightening of Jupiter’s aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft, Geophysics Research Letters, 44, 4523-4531, doi:10.1002/2017GL072912.
ADS  Cites
BibTeX DOI 
29)Louarn, P., et al. (2017), Generation of the Jovian hectometric radiation: First lessons from Juno, Geophysics Research Letters, 44, 4439-4446, doi:10.1002/2017GL072923.
ADS  Cites
BibTeX DOI 
28)Mauk, B.H., et al. (2017), Juno observations of energetic charged particles over Jupiter’s polar regions: Analysis of monodirectional and bidirectional electron beams, Geophysics Research Letters, 44, 4410-4418, doi:10.1002/2016GL072286.
ADS  Cites
BibTeX DOI 
27)Ma, Q., et al. (2017), Electron butterfly distributions at particular magnetic latitudes observed during Juno’s perijove pass, Geophysics Research Letters, 44, 4489-4496, doi:10.1002/2017GL072983.
ADS  Cites
BibTeX DOI 
26)McComas, D.J., et al. (2017), Plasma environment at the dawn flank of Jupiter’s magnetosphere: Juno arrives at Jupiter, Geophysics Research Letters, 44, 4432-4438, doi:10.1002/2017GL072831.
ADS  Cites
BibTeX DOI 
25)Moore, Kimberly M., et al. (2017), The analysis of initial Juno magnetometer data using a sparse magnetic field representation, Geophysics Research Letters, 44, 4687-4693, doi:10.1002/2017GL073133.
ADS  Cites
BibTeX DOI 
24)Moore, L., et al. (2017), Variability of Jupiter’s IR H3+ aurorae during Juno approach, Geophysics Research Letters, 44, 4513-4522, doi:10.1002/2017GL073156.
ADS  Cites
BibTeX DOI 
23)Moriconi, M.L., et al. (2017), Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions, Geophysics Research Letters, 44, 4641-4648, doi:10.1002/2017GL073592.
ADS  Cites
BibTeX DOI 
22)Moriconi, Maria L. and Noschese, R. and Adriani, A. (2017), Processing tools refinement for the JIRAM arrival to Jupiter, European Physical Journal Plus, 132, 227, doi:10.1140/epjp/i2017-11548-y.
ADS  Cites
BibTeX DOI 
21)Orton, G.S., et al. (2017), Multiple-wavelength sensing of Jupiter during the Juno mission’s first perijove passage, Geophysics Research Letters, 44, 4607-4614, doi:10.1002/2017GL073019.
ADS  Cites
BibTeX DOI 
20)Orton, Glenn S., et al. (2017), The first close-up images of Jupiter’s polar regions: Results from the Juno mission JunoCam instrument, Geophysics Research Letters, 44, 4599-4606, doi:10.1002/2016GL072443.
ADS  Cites
BibTeX DOI 
19)Paranicas, C., et al. (2017), Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3, Geophysics Research Letters, 44, 4426-4431, doi:10.1002/2017GL072600.
ADS  Cites
BibTeX DOI 
18)Sindoni, G., et al. (2017), Characterization of the white ovals on Jupiter’s southern hemisphere using the first data by the Juno/JIRAM instrument, Geophysics Research Letters, 44, 4660-4668, doi:10.1002/2017GL072940.
ADS  Cites
BibTeX DOI 
17)Sánchez-Lavega, A., et al. (2017), A planetary-scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground-based observations, Geophysics Research Letters, 44, 4679-4686, doi:10.1002/2017GL073421.
ADS  Cites
BibTeX DOI 
16)Tetrick, S.S., et al. (2017), Plasma waves in Jupiter’s high-latitude regions: Observations from the Juno spacecraft, Geophysics Research Letters, 44, 4447-4454, doi:10.1002/2017GL073073.
ADS  Cites
BibTeX DOI 
15)Wahl, S.M., et al. (2017), Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core, Geophysics Research Letters, 44, 4649-4659, doi:10.1002/2017GL073160.
ADS  Cites
BibTeX DOI 
14)Zhang, X. -J., et al. (2017), Searching for low-altitude magnetic field anomalies by using observations of the energetic particle loss cone on JUNO, Geophysics Research Letters, 44, 4472-4480, doi:10.1002/2017GL072902.
ADS  Cites
BibTeX DOI 
13)Cao, Hao and Stevenson, David J. (2017), Gravity and zonal flows of giant planets: From the Euler equation to the thermal wind equation, Journal of Geophysical Research (Planets), 122, 686-700, doi:10.1002/2017JE005272.
ADS  Cites
BibTeX DOI 
12)Imai, M., et al. (2017), Analysis of Jovian low-frequency radio emissions based on stereoscopic observations with Juno and Earth-based radio telescopes, Planetary Radio Emissions VIII, 13-23, doi:10.1553/PRE8s13.
ADS  Cites
BibTeX DOI 
11)Kurth, W.S., et al. (2017), First observations near Jupiter by the Juno Waves investigation, Planetary Radio Emissions VIII, 1-12, doi:10.1553/PRE8s1.
ADS  Cites
BibTeX DOI 
10)Louis, C., et al. (2017), Simulating Jupiter-satellite decametric emissions with ExPRES: A parametric study, Planetary Radio Emissions VIII, 59-72, doi:10.1553/PRE8s59.
ADS  Cites
BibTeX DOI 
9)Hospodarsky, George B. (2016), Spaced-based search coil magnetometers, Journal of Geophysical Research (Space Physics), 121, 12, doi:10.1002/2016JA022565.
ADS  Cites
BibTeX DOI 
8)Sampl, Manfred, et al. (2016), Juno model rheometry and simulation, Radio Science, 51, 1627-1635, doi:10.1002/2016RS005954.
ADS  Cites
BibTeX DOI 
7)Adriani, A., et al. (2016), Juno’s Earth flyby: the Jovian infrared Auroral Mapper preliminary results, Astrophysics and Space Science, 361, 272, doi:10.1007/s10509-016-2842-9.
ADS  Cites
BibTeX DOI 
6)Clark, G., et al. (2016), Modeling the response of a top hat electrostatic analyzer in an external magnetic field: Experimental validation with the Juno JADE-E sensor, Journal of Geophysical Research (Space Physics), 121, 5121-5136, doi:10.1002/2016JA022583.
ADS  Cites
BibTeX DOI 
5)Pedersen, David Arge Klevang, et al. (2016), MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging, Acta Astronautica, 118, 308-315, doi:10.1016/j.actaastro.2015.11.001.
ADS  Cites
BibTeX DOI 
4)Bernard, Douglas E., et al. (2013), Europa planetary protection for Juno Jupiter Orbiter, Advances in Space Research, 52, 547-568, doi:10.1016/j.asr.2013.03.015.
ADS  Cites
BibTeX DOI 
3)Grassi, D., et al. (2010), Jupiter’s hot spots: Quantitative assessment of the retrieval capabilities of future IR spectro-imagers, Planetary Space Science, 58, 1265-1278, doi:10.1016/j.pss.2010.05.003.
ADS  Cites
BibTeX DOI 
2)Adriani, Alberto, et al. (2008), JIRAM, the Image Spectrometer in the Near Infrared on Board the Juno Mission to Jupiter, Astrobiology, 8, 613-622, doi:10.1089/ast.2007.0167.
ADS  Cites
BibTeX DOI 
1)Matousek, Steve (2007), The Juno New Frontiers mission, Acta Astronautica, 61, 932-939, doi:10.1016/j.actaastro.2006.12.013.
ADS  Cites
BibTeX DOI 
Input file:            Juno_Known_20200302.doi    (2020-May-24 20:51:34)
Citations/BibTeX file: Juno_Known_20200302.bibtex (2020-May-25 22:24:02)
Below is a list of DOIs of the 163 papers with DOIs, in alphabetical order:
10.1002/2016GL072187
10.1002/2016GL072286
10.1002/2016GL072325
10.1002/2016GL072443
10.1002/2016GL072454
10.1002/2016JA022565
10.1002/2016JA022583
10.1002/2016RS005954
10.1002/2017GL072600
10.1002/2017GL072831
10.1002/2017GL072836
10.1002/2017GL072837
10.1002/2017GL072841
10.1002/2017GL072850
10.1002/2017GL072866
10.1002/2017GL072889
10.1002/2017GL072902
10.1002/2017GL072905
10.1002/2017GL072912
10.1002/2017GL072923
10.1002/2017GL072929
10.1002/2017GL072940
10.1002/2017GL072954
10.1002/2017GL072983
10.1002/2017GL073019
10.1002/2017GL073029
10.1002/2017GL073036
10.1002/2017GL073073
10.1002/2017GL073091
10.1002/2017GL073114
10.1002/2017GL073129
10.1002/2017GL073132
10.1002/2017GL073133
10.1002/2017GL073137
10.1002/2017GL073140
10.1002/2017GL073148
10.1002/2017GL073156
10.1002/2017GL073159
10.1002/2017GL073160
10.1002/2017GL073175
10.1002/2017GL073177
10.1002/2017GL073180
10.1002/2017GL073186
10.1002/2017GL073377
10.1002/2017GL073383
10.1002/2017GL073421
10.1002/2017GL073444
10.1002/2017GL073529
10.1002/2017GL073592
10.1002/2017GL073629
10.1002/2017GL073730
10.1002/2017GL074118
10.1002/2017GL074277
10.1002/2017GL074366
10.1002/2017GL075106
10.1002/2017GL075545
10.1002/2017GL076878
10.1002/2017GL076901
10.1002/2017JA024860
10.1002/2017JA025046
10.1002/2017JA025106
10.1002/2017JE005272
10.1002/2018GL077312
10.1007/s10509-016-2842-9
10.1007/s11214-013-0025-3
10.1007/s11214-013-9990-9
10.1007/s11214-014-0036-8
10.1007/s11214-014-0040-z
10.1007/s11214-014-0079-x
10.1007/s11214-014-0094-y
10.1007/s11214-016-0265-0
10.1007/s11214-017-0334-z
10.1007/s11214-017-0345-9
10.1007/s11214-017-0349-5
10.1007/s11214-017-0396-y
10.1007/s11214-017-0428-7
10.1007/s11214-017-0429-6
10.1007/s11214-017-0430-0
10.1016/j.actaastro.2006.12.013
10.1016/j.actaastro.2015.11.001
10.1016/j.asr.2013.03.015
10.1016/j.icarus.2017.05.015
10.1016/j.icarus.2017.06.007
10.1016/j.icarus.2018.04.020
10.1016/j.icarus.2019.03.022
10.1016/j.icarus.2019.04.003
10.1016/j.icarus.2019.113405
10.1016/j.icarus.2019.113475
10.1016/j.icarus.2019.113607
10.1016/j.jqsrt.2017.08.008
10.1016/j.pss.2010.05.003
10.1016/j.pss.2019.06.001
10.1016/j.pss.2019.104781
10.1029/2017JA025113
10.1029/2018GL078566
10.1029/2018GL078864
10.1029/2018GL078973
10.1029/2018GL079118
10.1029/2018GL080490
10.1029/2018GL081129
10.1029/2018GL081227
10.1029/2018JA025639
10.1029/2018JA025797
10.1029/2018JA026169
10.1029/2018JA026297
10.1029/2018JA026321
10.1029/2018JA026431
10.1029/2018JE005555
10.1029/2018JE005752
10.1029/2019GL082951
10.1029/2019GL083442
10.1029/2019GL083842
10.1029/2019GL084146
10.1029/2019GL084201
10.1029/2019GL084799
10.1029/2019GL085393
10.1029/2019GL086527
10.1029/2019JA026626
10.1029/2019JA026862
10.1029/2019JA026997
10.1029/2019JA027007
10.1029/2019JA027306
10.1029/2019JA027314
10.1029/2019JA027382
10.1029/2019JA027458
10.1029/2019JA027485
10.1029/2019JA027486
10.1029/2019JA027693
10.1029/2019JA027696
10.1029/2019JA027699
10.1029/2019JE006206
10.1029/2019JE006262
10.1038/nature23648
10.1038/nature25491
10.1038/nature25775
10.1038/nature25776
10.1038/nature25793
10.1038/s41467-019-10708-w
10.1038/s41550-017-0178
10.1038/s41550-018-0442-z
10.1038/s41550-018-0523-z
10.1038/s41550-019-0772-5
10.1038/s41550-019-0819-7
10.1038/s41550-020-1009-3
10.1038/s41586-018-0156-5
10.1038/s41586-018-0468-5
10.1089/ast.2007.0167
10.1093/mnras/stz2657
10.1126/science.aal2108
10.1126/science.aam5928
10.1126/science.aat1450
10.1140/epjp/i2017-11548-y
10.1553/PRE8s1
10.1553/PRE8s13
10.1553/PRE8s59
10.2514/1.G004503
10.3847/1538-3881/aace02
10.3847/1538-3881/aada81
10.3847/1538-3881/aae525
10.3847/1538-3881/aafb36
10.3847/1538-4365/aafdaa
10.3847/2041-8213/ab1086
10.3847/2041-8213/ab288e