Features & News

GOLD launches successfully onboard SES-14 satellite

January 25

UPDATE: SES-14 in good health and on track despite launch anomaly

NASA’s Global-scale Observations of the Limb and Disk (GOLD) instrument, designed and built by LASP, launched today from Kourou, French Guiana aboard SES-14, a commercial communications satellite built by Airbus Defence and Space. GOLD will investigate the dynamic intermingling of space and Earth’s uppermost atmosphere—and is the first NASA science mission to fly an instrument as a commercially hosted payload.

Space is not completely empty: It’s teeming with fast-moving charged particles and electric and magnetic fields that guide their motion. At the boundary between Earth’s atmosphere and space, the charged particles— called the ionosphere—co-exist with the upper reaches of the neutral atmosphere, called the thermosphere. The two commingle and influence one another constantly. This interplay—and the role terrestrial weather, space weather and Earth’s own magnetic field each have in it—is the focus of GOLD’s mission.

GOLD team successfully completes environmental testing

December 14

NASA’s Global-scale Observations of the Limb and Disk, or GOLD, instrument has successfully completed environmental testing at Airbus in Toulouse, France, in preparation for its groundbreaking mission to observe the nearest reaches of space. Scheduled for launch in late January 2018, GOLD will measure densities and temperatures in Earth’s thermosphere and ionosphere.

GOLD is a NASA Mission of Opportunity that will fly an ultraviolet imaging spectrograph on the SES-14 geostationary commercial communications satellite, built by Airbus for SES. The two-channel imaging spectrograph—designed and built at LASP—will explore the boundary between Earth and space, a dynamic area of near-Earth space that responds both to space weather from above and to weather in the atmosphere from below.

Major space mystery solved using data from student satellite

December 13

A 60-year-old mystery regarding the source of some energetic and potentially damaging particles in Earth’s radiation belts is now solved using data from a shoebox-sized satellite built and operated by University of Colorado Boulder students at LASP.

The results from the new study indicate energetic electrons in Earth’s inner radiation belt—primarily near its inner edge—are created by cosmic rays born from explosions of supernovas, said the study’s lead author, LASP scientist Xinlin Li. Earth’s radiation belts, known as the Van Allen belts, are layers of energetic particles held in place by Earth’s magnetic field.