Featured Event

Science with a Shoebox: How Small Space Telescopes Can Impact Astronomy in a Big Way

Event Date: Wednesday, Oct 02, 2019

The ultraviolet (UV) portion of the electromagnetic spectrum provides some of the most powerful diagnostics to shape our understanding of stars, planets, galaxies, and all the material in-between, but it has long been one of the most difficult regions to explore. The principal go-to observatory for astronomers is the venerable Hubble Space Telescope—the most sensitive ultraviolet eyes into the universe we have ever known. NASA is now studying a behemoth space observatory as a potential successor to Hubble to answer the pressing questions of the future, the Large UltraViolet/Optical/InfraRed Observatory (LUVOIR). At a massive 50 feet in diameter, LUVOIR would be more than 40 times larger than Hubble and 150 times more sensitive, but it’s more than a decade from being built.

Recent advances in technology have opened up a new and perhaps unexpected dimension in UV space astronomy that will fill the gap between Hubble and a possible LUVOIR: small satellites. At sizes ranging from a shoebox to a mini-fridge, these tiny spacecraft have the potential to do science that is exceedingly difficult even for Hubble, and outside the capabilities of other space astronomy missions.

In this talk, Dr. Brian Fleming will tell us what has changed to make a shoebox satellite suddenly have outsized potential, and highlight some exciting science that will be carried out by LASP scientists with the first batch of astrophysics CubeSats in the coming years.

Features & News

Volcanic eruption may explain recent purple sunrises

September 12

Early one morning in late August 2019, Colorado photographer Glenn Randall hiked several miles to a stream flowing into Lake Isabelle in the Indian Peaks Wilderness. He set up his camera near the stream and began photographing about 20 minutes before sunrise when a golden glow developed at the horizon. It wasn’t until Randall was back at home, however, that he noticed something odd: The sky above the golden glow and its reflection in the water were both a deep violet.

He’s not alone. Photographers across the country have noticed that sunrises and sunsets have become unusually purple this summer and early fall.

Now, LASP researchers have collected new measurements that help to reveal the cause of those colorful displays: an eruption that occurred thousands of miles away on a Russian volcano called Raikoke.

LASP scientists and teams receive NASA achievement medals

September 5

LASP scientists Robert Ergun and Richard Eastes have been recognized by NASA for their enduring contributions to their respective fields in recent ceremonies at the agency’s Goddard Spaceflight Center in Greenbelt, Maryland.

Ergun, also a professor in the CU Boulder Astrophysical and Planetary Sciences Department, was awarded the NASA Distinguished Public Service Medal for designing and building innovative electric field instruments for many NASA flight missions, including the MAVEN Mars mission and the Parker Solar Probe, currently making record-breaking close-in orbits of the Sun. The Distinguished Public Service Medal is NASA’s highest form of recognition awarded to a non-government individual whose service, ability, or vision has personally contributed to NASA’s advancement of the U.S.’s interests.

Eastes, who currently serves as the principal investigator for the LASP-built GOLD instrument, was recognized with the NASA Exceptional Public Service Medal for his work on GOLD and a career devoted to better understanding the complex dynamics of the Earth’s near-space boundary. The Exceptional Public Service Medal is awarded to a non-government individual for sustained performance that embodies multiple contributions on NASA projects, programs, or initiatives.

GOLD reveals unexpected changes in Earth’s nighttime ionosphere

August 13

NASA’s Global-scale Observations of the Limb and Disk (GOLD) mission has observed dramatic and unexplained shifts in the location of features in the Earth’s ionosphere surrounding the equator. Unanticipated changes in the nighttime ionosphere can lead to disruptions in communication and navigation that depend on satellites, such as GPS.

GOLD is an ultraviolet imaging spectrograph that was designed and built at LASP and is hosted on the SES-14 communications satellite. The latest discoveries from the mission are challenging mission scientists and were published last week in Geophysical Research Letters.

Since reaching orbit in October 2018, GOLD has been making observations of the Equatorial Ionization Anomaly (EIA), regions of the ionosphere with enhanced electron density north and south of the magnetic equator. One of the primary goals of the mission is to better understand the behavior of the EIA and the instabilities within it. GOLD presents a new ability to image the variability of ionospheric plasma and, ultimately, to understand its causes.