Featured Event

Science with a Shoebox: How Small Space Telescopes Can Impact Astronomy in a Big Way

Event Date: Wednesday, Oct 02, 2019

The ultraviolet (UV) portion of the electromagnetic spectrum provides some of the most powerful diagnostics to shape our understanding of stars, planets, galaxies, and all the material in-between, but it has long been one of the most difficult regions to explore. The principal go-to observatory for astronomers is the venerable Hubble Space Telescope—the most sensitive ultraviolet eyes into the universe we have ever known. NASA is now studying a behemoth space observatory as a potential successor to Hubble to answer the pressing questions of the future, the Large UltraViolet/Optical/InfraRed Observatory (LUVOIR). At a massive 50 feet in diameter, LUVOIR would be more than 40 times larger than Hubble and 150 times more sensitive, but it’s more than a decade from being built.

Recent advances in technology have opened up a new and perhaps unexpected dimension in UV space astronomy that will fill the gap between Hubble and a possible LUVOIR: small satellites. At sizes ranging from a shoebox to a mini-fridge, these tiny spacecraft have the potential to do science that is exceedingly difficult even for Hubble, and outside the capabilities of other space astronomy missions.

In this talk, Dr. Brian Fleming will tell us what has changed to make a shoebox satellite suddenly have outsized potential, and highlight some exciting science that will be carried out by LASP scientists with the first batch of astrophysics CubeSats in the coming years.

Features & News

An infrared close up of the moon

July 2

A first-of-its-kind camera developed in partnership between CU Boulder and Ball Aerospace will soon be landing on the moon.

NASA announced today that it has selected a scientific instrument, called the Lunar Compact Infrared Imaging System (L-CIRiS), for its Commercial Lunar Payload Services program. The camera will ride along with one of three robotic landers that will touch down on the lunar surface in the next several years—a key step in NASA’s goal of sending people back to the moon by 2024.

LASP planetary scientist Paul Hayne, who is leading the development of the instrument, said that the goal is to collect better maps of the lunar surface to understand how it formed and its geologic history. L-CIRiS will use infrared technology to map the temperatures of the shadows and boulders that dot the lunar surface in greater detail than any images to date.

NASA selects LASP-led IMPACT center to conduct dust-related research

July 1

NASA has selected eight teams to collaborate on research into the intersection of space science and human space exploration as part of the Solar System Exploration Research Virtual Institute (SSERVI). Among the teams is the CU Boulder and LASP-led Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT).

The IMPACT center, led by LASP scientist and CU Boulder professor of physics, Mihály Horányi, is an international collaboration that includes partners from the CU Boulder departments of physics and aerospace engineering sciences, LASP, and the Colorado School of Mines. The focus of IMPACT center research is the dusty plasma environments around the moon and other airless bodies in the solar system.

Meteors help Martian clouds form

June 18

How did the Red Planet get all of its clouds? LASP scientists may have discovered the secret: just add meteors.

Astronomers have long observed clouds in Mars’ middle atmosphere, which begins about 18 miles (30 kilometers) above the surface, but have struggled to explain how they formed.

Now, a new study, published on June 17 in the journal Nature Geoscience, examines those wispy accumulations and suggests that they owe their existence to a phenomenon called “meteoric smoke”—essentially, the icy dust created by space debris slamming into the planet’s atmosphere.