Posts Tagged: New Horizons

Student Dust Counter got few “hits” during Pluto flyby

A LASP-led and University of Colorado Boulder student-built instrument riding on NASA’s New Horizons spacecraft found only a handful of dust grains, the building blocks of planets, when it whipped by Pluto at 31,000 miles per hour last July.

Data downloaded and analyzed by the New Horizons team indicated the space environment around Pluto and its moons contained only about six dust particles per cubic mile, said LASP planetary scientist and CU-Boulder Professor Fran Bagenal, who leads the New Horizons Particles and Plasma Team.

“The bottom line is that space is mostly empty,” said Bagenal. “Any debris created when Pluto’s moons were captured or created during impacts has long since been removed by planetary processes.”

Moon engulfed in permanent, lopsided dust cloud

The moon is engulfed in a permanent but lopsided dust cloud that increases in density when annual events like the Geminids spew shooting stars, according to a new study led by LASP scientists at the University of Colorado Boulder.

The cloud is made up primarily of tiny dust grains kicked up from the moon’s surface by the impact of high-speed, interplanetary dust particles, said CU-Boulder physics Professor and LASP research associate Mihály Horányi. A single dust particle from a comet striking the moon’s surface lofts thousands of smaller dust specks into the airless environment, and the lunar cloud is maintained by regular impacts from such particles, said Horányi.

New Horizons in Astronomy

By Fran Bagenal, CU-Boulder Professor of Astrophysical and Planetary Sciences and New Horizons co-investigator

I admit that I love giving presentations on New Horizons to public audiences. It’s the killer combination of Pluto and space exploration. Everyone digs it. The best are astronomy clubs—just bursting with enthusiasm. And my favorite group of all time is the Rocky Mountain Star Stare (RMSS). Based in Colorado Springs, RMSS meets every year on a piece of land close to the Colorado–New Mexico border that is far from city lights. The trek is worth it—the Milky Way blazes across the sky.And these guys have brought along the most amazing astro-geek equipment.

After successful mission to Mercury, spacecraft on a crash course with history

NASA’s MESSENGER mission to Mercury, carrying an instrument designed and built at LASP, is slated to run out of fuel and crash into the planet in the coming days after a wildly successful, four-year orbiting mission chock-full of discoveries.

The mission began in 2004, when the MESSENGER spacecraft launched from Florida on a 7-year, 4.7 billion mile journey that involved 15 loops around the sun before the spacecraft settled into orbit around Mercury in March 2011. LASP provided the Mercury Atmospheric and Surface Composition Spectrometer (MASCS), which has been successfully making measurements of Mercury’s surface and its tenuous atmosphere, called the exosphere, since orbit insertion.

LASP brings New Horizons science to rural Colorado communities

After a decade-long voyage through the solar system, NASA’s New Horizons mission is scheduled to fly by Pluto in July 2015, carrying with it the LASP-built Student Dust Counter (SDC). The New Horizons mission also involves LASP scientists and CU-Boulder students, who await data from the unprecedented approach and close encounter of the dwarf planet and its five known moons.

In preparation for the July encounter, LASP Office of Communications and Outreach staff recently traveled to two rural Colorado communities and delivered Pluto-related programming to students and their families. Accompanying them was Fran Bagenal, LASP planetary scientist, CU-Boulder professor of astrophysical and planetary sciences, and New Horizons mission co-investigator. Bagenal served as the New Horizons and Pluto science expert during the school visits and gave public presentations to both communities.

LASP-built instrument on New Horizons readies for Pluto encounter

When NASA’s napping New Horizon’s spacecraft awakens later this week in preparation for its July 2015 encounter with Pluto, a University of Colorado Boulder student instrument onboard already will have been up for years.

The instrument, the Student Dust Counter (SDC), was designed and built to detect dust both on the interplanetary journey to Pluto and beyond, said CU-Boulder physics Professor and LASP research scientist Mihaly Horanyi, principal investigator on the effort. The SDC has been on for most of the mission—even as the other instruments primarily napped—measuring dust grains that are the building blocks of the solar system’s planets, he said.

Students use Student Dust Counter data to improve understanding of space dust

Using data from the NASA New Horizons mission to Pluto, LASP scientists have made new measurements of interplanetary dust density. The data, collected from the CU-Boulder student-built Student Dust Counter (SDC) and the meteoroid detector on the Pioneer 10 spacecraft, represent measurements of the micro-sized dust grains from the Earth out to the present position of the SDC, at approximately 20 Astronomical Units (AU). One AU is equal to the average distance from the Sun to the Earth, or approximately 93 million miles (149.5 million km).

New video features Student Dust Counter and team members

A new video that introduces the unique story of LASP student involvement in a NASA satellite instrument is now available. The video features students involved in the design, production, and operation of the Venetia Burney Student Dust Counter (SDC), an instrument aboard the NASA New Horizons mission to Pluto. Under the supervision of professional education staff, LASP undergraduate student Alex Thom compiled the video from archived mission footage and interviews.

Student-built space-science instrument breaks distance record; new results published

The Venetia Burney Student Dust Counter (SDC), a CU/LASP-built instrument aboard the NASA New Horizons mission to Pluto, just became the record-holder for the most distant functioning space dust detector ever in space. On October 10, the SDC surpassed the previous record when it flew beyond 18 astronomical units—one unit is the distance between the… Read more »